variantReport: Generate Variant Report

Description Usage Arguments Value Author(s) See Also Examples

Description

Functions for generating tabular variant reports including genomic context annotations and confidence statistics of variants. The annotations are obtained with utilities provided by the VariantAnnotation package and the variant statistics are retrieved from the input VCF files.

Usage

1
2
3
4
5
6
7
8
## Variant report
variantReport(files, args=files, txdb, fa, organism, out_dir = "results")

## Combine variant reports
combineVarReports(files, args=files, filtercol, ncol = 15)

## Create summary statistics of variants
varSummary(files, args=files)

Arguments

files

Object of class SYSargs or SYSargs2. The paths of the input VCF files are specified under infile1(args) and the paths of the output files under outfile1(args) or output(args).

args

Deprecated. Object of class SYSargs or SYSargs2. The paths of the input VCF files are specified under infile1(args) and the paths of the output files under outfile1(args) or output(args).

txdb

Annotation data stored as TranscriptDb object, which can be obtained from GFF/GTF files, BioMart, Bioc Annotation packages, UCSC, etc. For details see the vignette of the GenomicFeatures package. It is important to use here matching versions of the txdb and fa objects. The latter is the genome sequence used for read mapping and variant calling.

fa

FaFile object pointing to the sequence file of the corresponding reference genome stored in FASTA format or a BSgenome instance.

organism

Character vector specifying the organism name of the reference genome.

filtercol

Named character vector containing in the name field the column titles to filter on, and in the data field the corresponding values to include in the report. For instance, the setting filtercol=c(Consequence="nonsynonymous") will include only nonsysynonymous variances listed in the Consequence column. To omit the filtering step, one can use the setting filtercol="All".

ncol

Integer specifying the number of columns in the tabular input files. Default is set to 15.

out_dir

Character vector of a results directory name. Default is results.

Value

Tabular output files.

Author(s)

Thomas Girke

See Also

filterVars

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
## Alignment with BWA (sequentially on single machine)
param <- system.file("extdata", "bwa.param", package="systemPipeR")
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
args <- systemArgs(sysma=param, mytargets=targets)
sysargs(args)[1]

## Not run: 
library(VariantAnnotation)
system("bwa index -a bwtsw ./data/tair10.fasta")
bampaths <- runCommandline(args=args)

## Alignment with BWA (parallelized on compute cluster)
resources <- list(walltime=120, ntasks=1, ncpus=cores(args), memory=1024) 
reg <- clusterRun(args, conffile=".batchtools.conf.R", template="batchtools.slurm.tmpl", Njobs=18, runid="01", resourceList=resources)

## Variant calling with GATK
## The following creates in the inital step a new targets file
## (targets_bam.txt). The first column of this file gives the paths to
## the BAM files created in the alignment step. The new targets file and the
## parameter file gatk.param are used to create a new SYSargs
## instance for running GATK. Since GATK involves many processing steps, it is
## executed by a bash script gatk_run.sh where the user can specify the
## detailed run parameters. All three files are expected to be located in the
## current working directory. Samples files for gatk.param and
## gatk_run.sh are available in the subdirectory ./inst/extdata/ of the 
## source file of the systemPipeR package. 
writeTargetsout(x=args, file="targets_bam.txt")
system("java -jar CreateSequenceDictionary.jar R=./data/tair10.fasta O=./data/tair10.dict")
# system("java -jar /opt/picard/1.81/CreateSequenceDictionary.jar R=./data/tair10.fasta O=./data/tair10.dict")
args <- systemArgs(sysma="gatk.param", mytargets="targets_bam.txt")
resources <- list(walltime=120, ntasks=1, ncpus=cores(args), memory=1024) 
reg <- clusterRun(args, conffile=".batchtools.conf.R", template="batchtools.slurm.tmpl", Njobs=18, runid="01", resourceList=resources)
writeTargetsout(x=args, file="targets_gatk.txt")

## Variant calling with BCFtools
## The following runs the variant calling with BCFtools. This step requires in
## the current working directory the parameter file sambcf.param and the 
## bash script sambcf_run.sh.
args <- systemArgs(sysma="sambcf.param", mytargets="targets_bam.txt")
resources <- list(walltime=120, ntasks=1, ncpus=cores(args), memory=1024) 
reg <- clusterRun(args, conffile=".batchtools.conf.R", template="batchtools.slurm.tmpl", Njobs=18, runid="01", resourceList=resources)
writeTargetsout(x=args, file="targets_sambcf.txt")

## Filtering of VCF files generated by GATK
args <- systemArgs(sysma="filter_gatk.param", mytargets="targets_gatk.txt")
filter <- "totalDepth(vr) >= 2 & (altDepth(vr) / totalDepth(vr) >= 0.8) & rowSums(softFilterMatrix(vr))==4"
# filter <- "totalDepth(vr) >= 20 & (altDepth(vr) / totalDepth(vr) >= 0.8) & rowSums(softFilterMatrix(vr))==6"
filterVars(args, filter, varcaller="gatk", organism="A. thaliana")
writeTargetsout(x=args, file="targets_gatk_filtered.txt")

## Filtering of VCF files generated by BCFtools
args <- systemArgs(sysma="filter_sambcf.param", mytargets="targets_sambcf.txt")
filter <- "rowSums(vr) >= 2 & (rowSums(vr[,3:4])/rowSums(vr[,1:4]) >= 0.8)"
# filter <- "rowSums(vr) >= 20 & (rowSums(vr[,3:4])/rowSums(vr[,1:4]) >= 0.8)"
filterVars(args, filter, varcaller="bcftools", organism="A. thaliana")
writeTargetsout(x=args, file="targets_sambcf_filtered.txt")

## Annotate filtered variants from GATK
args <- systemArgs(sysma="annotate_vars.param", mytargets="targets_gatk_filtered.txt")
txdb <- loadDb("./data/tair10.sqlite")
fa <- FaFile(systemPipeR::reference(args))
variantReport(args=args, txdb=txdb, fa=fa, organism="A. thaliana")

## Annotate filtered variants from BCFtools
args <- systemArgs(sysma="annotate_vars.param", mytargets="targets_sambcf_filtered.txt")
txdb <- loadDb("./data/tair10.sqlite")
fa <- FaFile(systemPipeR::reference(args))
variantReport(args=args, txdb=txdb, fa=fa, organism="A. thaliana")

## Combine results from GATK
args <- systemArgs(sysma="annotate_vars.param", mytargets="targets_gatk_filtered.txt")
combineDF <- combineVarReports(args, filtercol=c(Consequence="nonsynonymous"))
write.table(combineDF, "./results/combineDF_nonsyn_gatk.xls", quote=FALSE, row.names=FALSE, sep="\t")

## Combine results from BCFtools
args <- systemArgs(sysma="annotate_vars.param", mytargets="targets_sambcf_filtered.txt")
combineDF <- combineVarReports(args, filtercol=c(Consequence="nonsynonymous"))
write.table(combineDF, "./results/combineDF_nonsyn_sambcf.xls", quote=FALSE, row.names=FALSE, sep="\t")

## Summary for GATK
args <- systemArgs(sysma="annotate_vars.param", mytargets="targets_gatk_filtered.txt")
write.table(varSummary(args), "./results/variantStats_gatk.xls", quote=FALSE, col.names = NA, sep="\t")

## Summary for BCFtools
args <- systemArgs(sysma="annotate_vars.param", mytargets="targets_sambcf_filtered.txt")
write.table(varSummary(args), "./results/variantStats_sambcf.xls", quote=FALSE, col.names = NA, sep="\t")

## Venn diagram of variants
args <- systemArgs(sysma="annotate_vars.param", mytargets="targets_gatk_filtered.txt")
varlist <- sapply(names(outpaths(args))[1:4], function(x) as.character(read.delim(outpaths(args)[x])$VARID))
vennset_gatk <- overLapper(varlist, type="vennsets")
args <- systemArgs(sysma="annotate_vars.param", mytargets="targets_sambcf_filtered.txt")
varlist <- sapply(names(outpaths(args))[1:4], function(x) as.character(read.delim(outpaths(args)[x])$VARID))
vennset_bcf <- overLapper(varlist, type="vennsets")
vennPlot(list(vennset_gatk, vennset_bcf), mymain="", mysub="GATK: red; BCFtools: blue", colmode=2, ccol=c("blue", "red"))

## End(Not run)

tgirke/systemPipeR documentation built on Sept. 18, 2021, 12:03 p.m.