admmlasso_log: Fit l1-penalized logistic regression model using ADMM

Description Usage Arguments Value

Description

Use an ADMM approach to find the parameters for a l1-penalized logistic regression model. Finds solution to argmin_beta sum(log(1+-yX beta)) + lambda sum(|beta|)

Usage

1
admmlasso_log(X, y, lam, rho = 0.001, maxit = 1000, tol = 0.001)

Arguments

X

Covariate matrix (no column for intercept)

y

Vector of observations (coded in -1/1)

lam

Tuning parameter for lasso penalty

rho

Tuning parameter for ADMM optimization

maxit

Maximum number of iterations

tol

Convergence criterion

Value

Vector containing updated estimate of beta vector


theandyb/aeffp documentation built on May 8, 2019, 9:09 a.m.