b_update: Update beta estimates using Newton-Raphson algorithm

Description Usage Arguments Value

Description

The beta-update step requires optimizing a convex function. This version of the update function uses a Newton-Raphson approach to minimizing the objective function.

Usage

1
2
b_update(X, y, u, z, rho, maxiter = 50, toler = 1e-05, b = 0.5,
  alpha = 0.1)

Arguments

X

Covariate matrix (no column for intercept)

y

Vector of observations (coded in -1/1)

u

Current value of u vector (ADMM optimization)

z

Current value of z vector (ADMM optimization)

rho

Tuning parameter for ADMM optimization

maxiter

Maximum number of iterations

toler

Convergence criterion

b

Backtracking tuning parameter

alpha

Backtracking tuning parameter

Value

Vector containing updated estimate of beta vector


theandyb/aeffp documentation built on May 8, 2019, 9:09 a.m.