Description Usage Arguments Value
Use an ADMM approach to find the parameters for a l1-penalized logistic regression model. Finds solution to argmin_beta sum(log(1+-yX beta)) + lambda*sum(|beta|)
1 | admmlasso_logC(X, y, lam, rho = 0.001, maxit = 1000L, tol = 0.001)
|
X |
Covariate matrix (no column for intercept) |
y |
Vector of observations (coded in -1/1) |
lam |
Tuning parameter for lasso penalty |
rho |
Tuning parameter for ADMM optimization |
maxit |
Maximum number of iterations |
tol |
Convergence criterion |
Vector containing updated estimate of beta vector
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.