Description Usage Arguments Value
The beta-update step requires optimizing a convex function. This version of the update function uses a Newton-Raphson approach to minimizing the objective function.
1 2 | b_updateC_tabled(X, y, u, z, rho, maxiter = 50L, toler = 1e-05,
b = 0.5, alpha = 0.1)
|
X |
Covariate matrix (no column for intercept) |
y |
Matrix of opportunities (col 1) and observations (col 2, coded in -1/1) |
u |
Current value of u vector (ADMM optimization) |
z |
Current value of z vector (ADMM optimization) |
rho |
Tuning parameter for ADMM optimization |
maxiter |
Maximum number of iterations |
toler |
Convergence criterion |
b |
Backtracking tuning parameter |
alpha |
Backtracking tuning parameter |
Vector containing updated estimate of beta vector
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.