R/glmmLasso_MultLambdas.r

Defines functions predict.glmmLasso_MultLambdas glmmLasso_MultLambdas

Documented in glmmLasso_MultLambdas

#' @title glmmLasso_MultLambdas
#' @description Variable selection using glmmLasso for multiple lambdas values  
#' @details Build multiple models given a sequence of lambda values
#' @author Pirapong Jitngamplang, Jared Lander
#' @export
#' @param fix A two-sided linear formula object describing the fixed-effects part of the model, with the response on the left of a ~ operator and the terms, separated by + operators, on the right. For categorical covariables use as.factor(.) in the formula. Note, that the corresponding dummies are treated as a group and are updated blockwise
#' @param rnd A two-sided linear formula object describing the random-effects part of the model, with the grouping factor on the left of a ~ operator and the random terms, separated by + operators, on the right; aternatively, the random effects design matrix can be given directly (with suitable column names). If set to NULL, no random effects are included.
#' @param data The data frame containing the variables named in formula.
#' @param family a GLM family, see glm and family. Also ordinal response models can be fitted: use family=acat() and family=cumulative() for the fitting of an adjacent category or cumulative model, respectively. If family is missing then a linear mixed model is fit; otherwise a generalized linear mixed model is fit.
#' @param lambdas The penalty parameter that controls the shrinkage of fixed terms and controls the variable selection. The optimal penalty parameter is a tuning parameter of the procedure that has to be determined, e.g. by use of information criteria or cross validation. Should inputted as a numeric vector from high to low. (See details for an example.)
#' @param nlambdas the number of lambdas values, default value is 100.
#' @param lambda.min.ratio Smallest value for lambda, as a fraction of lambda.max, the (data derived) entry value (i.e. the smallest value for which all coefficients are zero). The default depends on the sample size nobs relative to the number of variables nvars. If nobs > nvars, the default is 0.0001, close to zero. If nobs < nvars, the default is 0.01.
#' @param \dots can receive parameters accepted by glmmLasso
#' @return Returns a glmmLasso_MultLambdas object, which is list glmmLasso models for each lambda value.  
#' @examples
#' 
#' library(glmmLasso)
#' data("soccer")
#' 
#' mod1 <- glmmLasso_MultLambdas(fix = points ~ transfer.spendings + 
#' ball.possession + tackles , rnd = list(team =~ 1), 
#' data = soccer, family = poisson(link = log)) 
#' 
#' 
#'  

glmmLasso_MultLambdas <- function(fix, rnd, data, 
                                  family = stats::gaussian(link = "identity"), 
                                  lambdas = NULL,
                                  nlambdas = 100,
                                  lambda.min.ratio=ifelse(nobs < nvars, 0.01, 0.0001), 
                                  ...)
{
    
    # fitting first model to generate initial inputs for control parameter
    # here we use the first lambda (highest penalty) to start
    # based glmmLasso's author, glmmLasso is faster when final coefficient
    # estimates corresponding to a lambda is used as the starting value for
    # the next smaller lambda  
    
    # defining the number of observation
    nobs <- nrow(data)
    
    # defining the number of preditors based on the number of terms in fix formula
    nvars <- length(attr(stats::terms(fix), 'term.labels'))
    
    if (is.null(lambdas))
    {
        
        # building the lambda vector
        lambdas <- buildLambdas(fix = fix,
                                rnd = rnd,
                                data = data, 
                                nlambdas = nlambdas, 
                                lambda.min.ratio = lambda.min.ratio)    
    }
    
    
    
    # passing Q.start and Delta.start is modeled from glmmLasso demo file
    # from the "More Elegant section" 
    
    # Delta is matrix containing the estimates of fixed and random effects 
    # (columns) for each iteration (rows) of the main algorithm (i.e. before 
    # the final re-estimation step is performed, see details).
    # Passing the set of estimates from the last iteration as the 
    # 'start' parameter of the controlList
    
    # Q_long is a list containing the estimates of the random effects
    # variance-covariance parameters for each iteration of the main algorithm.
    # Passing the variance-covaiance matrix as the q_start parameter of
    # the controlList
    
    
    
    # initializing list of object to hold the model outputs 
    modList <- vector(mode = 'list', length = length(lambdas))
    
    
    # fit first lambda
    first_fit <- glmmLasso::glmmLasso(fix = fix,
                                      rnd = rnd,
                                      data = data,
                                      family = family,
                                      lambda = lambdas[1],
                                      ...)
    # builing the first Delta.start, transpose required to make dimension
    
    Delta.start <- first_fit$Deltamatrix[first_fit$conv.step, ] %>% t()
    Q.start <- first_fit$Q_long[[first_fit$conv.step + 1]]
    
    for (l in seq_along(lambdas))
    {
        
        # for showing lambda at each iteration
        # message(sprintf('Lambda: %s\n ', lambdas[l]))
        
        fit <- glmmLasso::glmmLasso(fix = fix,
                                    rnd = rnd,
                                    data = data,
                                    family = family,
                                    lambda = lambdas[l],
                                    control = list(start=Delta.start[l,],
                                                   q_start=Q.start[l]),...)
        
        # storing model objects before storing to modList
        fit$lambda <- lambdas[l]
        fit$Delta.start <- Delta.start[l,]
        fit$Q.start <- Q.start[l]
        fit$data <- data
        fit$rnd <- rnd
        fit$fix <- fix
        fit$family <- family
        
        modList[[l]] <- fit
        Delta.start <- rbind(Delta.start, fit$Deltamatrix[fit$conv.step, ])
        Q.start <- c(Q.start, fit$Q_long[[fit$conv.step + 1]])
        
        
        
    }
    
    # the function returns a list of glmmLasso models 
    
    attr(modList, 'lambdas') <- lambdas
    
    class(modList) <- 'glmmLasso_MultLambdas'
    
    return(modList)
}



predict.glmmLasso_MultLambdas <- function(object, newdata, ...)
{
    # instantiating list to hold nlambdas number of n x 1 vectors 
    # pred_vec_list <- vector(mode = 'list', length = length(object))
    # storing returned vectors in a list 
    
    pred_vec_list <- purrr::map(.x = object, .f = stats::predict, 
                                newdata = newdata)
    
    pred_matrix <- do.call(what = cbind, args = pred_vec_list)
    
    return(pred_matrix)
}
thepira/cv.glmmLasso documentation built on Feb. 13, 2019, 2:36 p.m.