#' makes 4 plots with NTE data
#'
#' @param d data frame with NTE data
#' @param sz size of data points in graphs
#' @return ggplot graph
#' @examples
#' d = NTE.load('20191121.txt')
#' @export
NTE.plotSummary <- function(d,sz=2) {
p1 = ggplot(d, aes(time.sec/3600,pressure*1e6)) +
geom_path(size=sz, col='red') +
xlab('time (h)') +
ylab(expression(paste('p (',mu,'Torr)'))) +
theme_bw()
p2 = ggplot(d, aes(time.sec/3600,thickness)) +
geom_path(size=sz, col='red') +
xlab('time (h)') +
ylab(expression(paste('t (m.u.)'))) +
theme_bw()
p3 = ggplot(subset(d, T.substrate<300), aes(time.sec/3600,T.substrate)) +
geom_point(size=sz, col='red') +
xlab('time (h)') +
ylab(expression(paste('T'[sub],' ('^o,'C)'))) +
theme_bw()
p4 = ggplot(d, aes(time.sec/3600,deposition.rate)) +
geom_point(size=sz, col='red') +
xlab('time (h)') +
ylab(expression(paste('r (m.u./s)'))) +
theme_bw()
p.sum = plot_grid(p1, p2, p3, p4, labels = c('A', 'B', 'C', 'D'), label_size = 12)
p.sum
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.