# These functions are tested indirectly when the models are used. Since this
# function is executed on package startup, you can't execute them to test since
# they are already in the parsnip model database. We'll exclude them from
# coverage stats for this reason.
# nocov start
# ------------------------------------------------------------------------------
make_stan_logistic_reg <- function() {
parsnip::set_model_engine("logistic_reg", "classification", "stan_glmer")
parsnip::set_dependency("logistic_reg",
eng = "stan_glmer",
pkg = "rstanarm",
mode = "classification")
parsnip::set_dependency("logistic_reg",
eng = "stan_glmer",
pkg = "multilevelmod",
mode = "classification")
parsnip::set_encoding(
model = "logistic_reg",
eng = "stan_glmer",
mode = "classification",
options = list(
predictor_indicators = "none",
compute_intercept = FALSE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
parsnip::set_fit(
model = "logistic_reg",
eng = "stan_glmer",
mode = "classification",
value = list(
interface = "formula",
protect = c("formula", "data", "weights"),
func = c(pkg = "rstanarm", fun = "stan_glmer"),
defaults = list(family = rlang::expr(stats::binomial), refresh = 0)
)
)
parsnip::set_pred(
model = "logistic_reg",
eng = "stan_glmer",
mode = "classification",
type = "class",
value = list(
pre = NULL,
post = function(x, object) {
x <- apply(x, 2, function(x) mean(x))
x <- ifelse(x >= 0.5, object$lvl[2], object$lvl[1])
unname(x)
},
func = c(pkg = "rstanarm", fun = "posterior_predict"),
args = list(
object = rlang::expr(object$fit),
newdata = rlang::expr(new_data),
seed = rlang::expr(sample.int(10 ^ 5, 1))
)
)
)
parsnip::set_pred(
model = "logistic_reg",
eng = "stan_glmer",
mode = "classification",
type = "prob",
value = list(
pre = NULL,
post = function(x, object) {
x <- apply(x, 2, function(x) mean(x))
x <- tibble::tibble(v1 = 1 - x, v2 = x)
colnames(x) <- object$lvl
x
},
func = c(pkg = "rstanarm", fun = "posterior_predict"),
args = list(
object = rlang::expr(object$fit),
newdata = rlang::expr(new_data),
seed = rlang::expr(sample.int(10 ^ 5, 1))
)
)
)
parsnip::set_pred(
model = "logistic_reg",
eng = "stan_glmer",
mode = "classification",
type = "conf_int",
value = list(
pre = NULL,
post = function(results, object) {
res_2 <-
tibble::tibble(
lo =
parsnip::convert_stan_interval(
results,
level = object$spec$method$pred$conf_int$extras$level
),
hi =
parsnip::convert_stan_interval(
results,
level = object$spec$method$pred$conf_int$extras$level,
lower = FALSE
),
)
res_1 <- res_2
res_1$lo <- 1 - res_2$hi
res_1$hi <- 1 - res_2$lo
lo_nms <- paste0(".pred_lower_", object$lvl)
hi_nms <- paste0(".pred_upper_", object$lvl)
colnames(res_1) <- c(lo_nms[1], hi_nms[1])
colnames(res_2) <- c(lo_nms[2], hi_nms[2])
res <- dplyr::bind_cols(res_1, res_2)
if (object$spec$method$pred$conf_int$extras$std_error) {
res$.std_error <- apply(results, 2, sd, na.rm = TRUE)
}
res
},
func = c(pkg = "parsnip", fun = "stan_conf_int"),
args =
list(
object = expr(object$fit),
newdata = expr(new_data)
)
)
)
parsnip::set_pred(
model = "logistic_reg",
eng = "stan_glmer",
mode = "classification",
type = "pred_int",
value = list(
pre = NULL,
post = function(results, object) {
res_2 <-
tibble::tibble(
lo =
parsnip::convert_stan_interval(
results,
level = object$spec$method$pred$pred_int$extras$level
),
hi =
parsnip::convert_stan_interval(
results,
level = object$spec$method$pred$pred_int$extras$level,
lower = FALSE
),
)
res_1 <- res_2
res_1$lo <- 1 - res_2$hi
res_1$hi <- 1 - res_2$lo
lo_nms <- paste0(".pred_lower_", object$lvl)
hi_nms <- paste0(".pred_upper_", object$lvl)
colnames(res_1) <- c(lo_nms[1], hi_nms[1])
colnames(res_2) <- c(lo_nms[2], hi_nms[2])
res <- dplyr::bind_cols(res_1, res_2)
if (object$spec$method$pred$pred_int$extras$std_error)
res$.std_error <- apply(results, 2, sd, na.rm = TRUE)
res
},
func = c(pkg = "rstanarm", fun = "posterior_predict"),
args =
list(
object = rlang::expr(object$fit),
newdata = rlang::expr(new_data),
seed = rlang::expr(sample.int(10^5, 1))
)
)
)
parsnip::set_pred(
model = "logistic_reg",
eng = "stan_glmer",
mode = "classification",
type = "raw",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "posterior_predict"),
args = list(object = rlang::expr(object$fit), newdata = rlang::expr(new_data))
)
)
}
# ------------------------------------------------------------------------------
make_lme4_logistic_reg <- function() {
parsnip::set_model_engine("logistic_reg", "classification", "glmer")
parsnip::set_dependency("logistic_reg",
eng = "glmer",
pkg = "lme4",
mode = "classification")
parsnip::set_dependency("logistic_reg",
eng = "glmer",
pkg = "multilevelmod",
mode = "classification")
parsnip::set_encoding(
model = "logistic_reg",
eng = "glmer",
mode = "classification",
options = list(
predictor_indicators = "none",
compute_intercept = FALSE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
parsnip::set_fit(
model = "logistic_reg",
eng = "glmer",
mode = "classification",
value = list(
interface = "formula",
protect = c("formula", "data", "weights"),
func = c(pkg = "lme4", fun = "glmer"),
defaults = list(family = quote(binomial))
)
)
parsnip::set_pred(
model = "logistic_reg",
eng = "glmer",
mode = "classification",
type = "class",
value = list(
pre = reformat_lme_pred_data,
post = function (x, object) {
x <- ifelse(x >= 0.5, object$lvl[2], object$lvl[1])
unname(x)
},
func = c(fun = "predict"),
args = list(
object = rlang::expr(object$fit),
newdata = rlang::expr(new_data),
allow.new.levels = TRUE,
re.form = NA,
na.action = rlang::expr(na.exclude),
type = "response"
)
)
)
parsnip::set_pred(
model = "logistic_reg",
eng = "glmer",
mode = "classification",
type = "prob",
value = list(
pre = reformat_lme_pred_data,
post = function(x, object) {
x <- tibble::tibble(v1 = 1 - x, v2 = x)
colnames(x) <- object$lvl
x
},
func = c(fun = "predict"),
args = list(
object = rlang::expr(object$fit),
newdata = rlang::expr(new_data),
allow.new.levels = TRUE,
re.form = NA,
na.action = rlang::expr(na.exclude),
type = "response"
)
)
)
}
# ------------------------------------------------------------------------------
make_gee_logistic_reg <- function() {
parsnip::set_model_engine("logistic_reg", "classification", "gee")
parsnip::set_dependency("logistic_reg",
eng = "gee",
pkg = "gee",
mode = "classification")
parsnip::set_dependency("logistic_reg",
eng = "gee",
pkg = "multilevelmod",
mode = "classification")
parsnip::set_encoding(
model = "logistic_reg",
eng = "gee",
mode = "classification",
options = list(
predictor_indicators = "none",
compute_intercept = FALSE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
parsnip::set_fit(
model = "logistic_reg",
eng = "gee",
mode = "classification",
value = list(
interface = "formula",
protect = c("formula", "data"),
func = c(pkg = "multilevelmod", fun = "gee_fit"),
defaults = list(family = rlang::expr(binomial))
)
)
parsnip::set_pred(
model = "logistic_reg",
eng = "gee",
mode = "classification",
type = "class",
value = list(
pre = NULL,
post = function(x, object) {
x <- ifelse(x >= 0.5, object$lvl[2], object$lvl[1])
unname(x)
},
func = c(fun = "predict"),
args =
list(
object = quote(object$fit),
newdata = quote(new_data),
type = "response"
)
)
)
parsnip::set_pred(
model = "logistic_reg",
eng = "gee",
mode = "classification",
type = "prob",
value = list(
pre = NULL,
post = function(x, object) {
x <- tibble::tibble(v1 = 1 - x, v2 = x)
colnames(x) <- object$lvl
x
},
func = c(fun = "predict"),
args =
list(
object = quote(object$fit),
newdata = quote(new_data),
type = "response"
)
)
)
parsnip::set_pred(
model = "logistic_reg",
eng = "gee",
mode = "classification",
type = "raw",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict"),
args = list(
object = rlang::expr(object$fit),
newdata = rlang::expr(new_data)
)
)
)
}
# nocov end
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.