test_that('linear gee execution', {
skip_if_not_installed("gee")
skip_on_cran()
# ----------------------------------------------------------------------------
# Run both regular and GEE model
set.seed(1234)
gee_mod <- gee::gee(depr_score ~ week, id = riesby_tr$subject,
family = quasi, data = riesby_tr)
# gee doesn't have all of the elements that are needed from prediction. Get
# them from glm
glm_mod <- glm(depr_score ~ week, data = riesby_tr)
gee_mod$rank <- glm_mod$rank
gee_mod$qr <- glm_mod$qr
class(gee_mod) <- c(class(gee_mod), "lm")
# ----------------------------------------------------------------------------
# Check for error
expect_error(
ps_mod <-
linear_reg() %>%
set_engine("gee", family = quasi) %>%
fit(depr_score ~ week + id_var(subject), data = riesby_tr),
regex = NA
)
# See if coefficients for both model runs are the same
expect_equal(
coef(ps_mod$fit),
coef(gee_mod)
)
# Check predictions
expect_equal(
unname(predict(gee_mod, riesby_te)),
predict(ps_mod, riesby_te)$.pred
)
})
test_that('mode specific package dependencies', {
expect_identical(
get_from_env(paste0("linear_reg", "_pkgs")) %>%
dplyr::filter(engine == "gee", mode == "classification") %>%
dplyr::pull(pkg),
list()
)
expect_identical(
get_from_env(paste0("linear_reg", "_pkgs")) %>%
dplyr::filter(engine == "gee", mode == "regression") %>%
dplyr::pull(pkg),
list(c("gee", "multilevelmod"))
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.