test_that('logistic gee execution', {
skip_if_not_installed("gee")
skip_on_cran()
# ----------------------------------------------------------------------------
# Run both regular and GEE model
set.seed(1234)
gee_mod <- gee::gee(binary ~ week + imipramine, id = riesby_bin_tr$subject,
family = binomial, data = riesby_bin_tr)
# gee doesn't have all of the elements that are needed from prediction. Get
# them from glm
glm_mod <- glm(binary ~ week + imipramine, data = riesby_bin_tr, family = binomial)
gee_mod$rank <- glm_mod$rank
gee_mod$qr <- glm_mod$qr
class(gee_mod) <- c(class(gee_mod), "lm")
# ----------------------------------------------------------------------------
# Check for error
expect_error(
ps_mod <-
logistic_reg() %>%
set_engine("gee") %>%
fit(depressed ~ week + imipramine + id_var(subject), data = riesby_bin_tr),
regex = NA
)
# ----------------------------------------------------------------------------
# See if coefficients for both model runs are the same
expect_equal(
coef(ps_mod$fit),
coef(gee_mod)
)
# ----------------------------------------------------------------------------
gee_prob <- unname(predict(gee_mod, riesby_bin_te, type = "response"))
pa_prob <- predict(ps_mod, riesby_bin_te, type = "prob")
expect_equal(
gee_prob,
pa_prob$.pred_low
)
gee_cls <- ifelse(gee_prob > 0.5, "low", "high")
gee_cls <- factor(gee_cls, levels = levels(riesby_bin_tr$depressed))
pa_cls <- predict(ps_mod, riesby_bin_te, type = "class")
expect_equal(
gee_cls,
pa_cls$.pred_class
)
})
test_that('mode specific package dependencies', {
expect_identical(
get_from_env(paste0("logistic_reg", "_pkgs")) %>%
dplyr::filter(engine == "gee", mode == "classification") %>%
dplyr::pull(pkg),
list(c("gee", "multilevelmod"))
)
expect_identical(
get_from_env(paste0("logistic_reg", "_pkgs")) %>%
dplyr::filter(engine == "gee", mode == "regression") %>%
dplyr::pull(pkg),
list()
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.