#' High correlation filter
#'
#' `step_corr()` creates a *specification* of a recipe step that will
#' potentially remove variables that have large absolute correlations with other
#' variables.
#'
#' @inheritParams step_center
#' @param threshold A value for the threshold of absolute
#' correlation values. The step will try to remove the minimum
#' number of columns so that all the resulting absolute
#' correlations are less than this value.
#' @param use A character string for the `use` argument to
#' the [stats::cor()] function.
#' @param method A character string for the `method` argument
#' to the [stats::cor()] function.
#' @param removals A character string that contains the names of
#' columns that should be removed. These values are not determined
#' until [prep()] is called.
#' @template step-return
#' @template filter-steps
#' @author Original R code for filtering algorithm by Dong Li,
#' modified by Max Kuhn. Contributions by Reynald Lescarbeau (for
#' original in `caret` package). Max Kuhn for the `step`
#' function.
#' @family variable filter steps
#' @export
#'
#' @details This step attempts to remove variables to keep the
#' largest absolute correlation between the variables less than
#' `threshold`.
#'
#' When a column has a single unique value, that column will be
#' excluded from the correlation analysis. Also, if the data set
#' has sporadic missing values (and an inappropriate value of `use`
#' is chosen), some columns will also be excluded from the filter.
#'
#' The arguments `use` and `method` don't take effect if case weights
#' are used in the recipe.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble is returned with
#' columns `terms` and `id`:
#'
#' \describe{
#' \item{terms}{character, the selectors or variables selected to be removed}
#' \item{id}{character, id of this step}
#' }
#'
#' ```{r, echo = FALSE, results="asis"}
#' step <- "step_corr"
#' result <- knitr::knit_child("man/rmd/tunable-args.Rmd")
#' cat(result)
#' ```
#'
#' @template case-weights-unsupervised
#'
#' @examplesIf rlang::is_installed("modeldata")
#' data(biomass, package = "modeldata")
#'
#' set.seed(3535)
#' biomass$duplicate <- biomass$carbon + rnorm(nrow(biomass))
#'
#' biomass_tr <- biomass[biomass$dataset == "Training", ]
#' biomass_te <- biomass[biomass$dataset == "Testing", ]
#'
#' rec <- recipe(
#' HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur + duplicate,
#' data = biomass_tr
#' )
#'
#' corr_filter <- rec %>%
#' step_corr(all_numeric_predictors(), threshold = .5)
#'
#' filter_obj <- prep(corr_filter, training = biomass_tr)
#'
#' filtered_te <- bake(filter_obj, biomass_te)
#' round(abs(cor(biomass_tr[, c(3:7, 9)])), 2)
#' round(abs(cor(filtered_te)), 2)
#'
#' tidy(corr_filter, number = 1)
#' tidy(filter_obj, number = 1)
step_corr <- function(recipe,
...,
role = NA,
trained = FALSE,
threshold = 0.9,
use = "pairwise.complete.obs",
method = "pearson",
removals = NULL,
skip = FALSE,
id = rand_id("corr")) {
add_step(
recipe,
step_corr_new(
terms = enquos(...),
role = role,
trained = trained,
threshold = threshold,
use = use,
method = method,
removals = removals,
skip = skip,
id = id,
case_weights = NULL
)
)
}
step_corr_new <-
function(terms, role, trained, threshold, use, method,
removals, skip, id, case_weights) {
step(
subclass = "corr",
terms = terms,
role = role,
trained = trained,
threshold = threshold,
use = use,
method = method,
removals = removals,
skip = skip,
id = id,
case_weights = case_weights
)
}
#' @export
prep.step_corr <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names], types = c("double", "integer"))
check_number_decimal(x$threshold, min = 0, max = 1, arg = "threshold")
use <- x$use
rlang::arg_match(use, c("all.obs", "complete.obs", "pairwise.complete.obs",
"everything", "na.or.complete"))
method <- x$method
rlang::arg_match(method, c("pearson", "kendall", "spearman"))
wts <- get_case_weights(info, training)
were_weights_used <- are_weights_used(wts, unsupervised = TRUE)
if (isFALSE(were_weights_used)) {
wts <- NULL
}
if (length(col_names) > 1) {
filter <- corr_filter(
x = training[, col_names],
wts = wts,
cutoff = x$threshold,
use = x$use,
method = x$method
)
} else {
filter <- character(0)
}
step_corr_new(
terms = x$terms,
role = x$role,
trained = TRUE,
threshold = x$threshold,
use = x$use,
method = x$method,
removals = filter,
skip = x$skip,
id = x$id,
case_weights = were_weights_used
)
}
#' @export
bake.step_corr <- function(object, new_data, ...) {
new_data <- recipes_remove_cols(new_data, object)
new_data
}
#' @export
print.step_corr <-
function(x, width = max(20, options()$width - 36), ...) {
title <- "Correlation filter on "
print_step(x$removals, x$terms, x$trained, title, width,
case_weights = x$case_weights)
invisible(x)
}
corr_filter <-
function(x,
wts = NULL,
cutoff = .90,
use = "pairwise.complete.obs",
method = "pearson") {
x <- correlations(x, wts = wts, use = use, method = method)
if (any(!vec_detect_complete(x))) {
all_na <- apply(x, 2, function(x) all(is.na(x)))
if (sum(all_na) >= nrow(x) - 1) {
cli::cli_warn(
"Too many correlations are `NA`; skipping correlation filter."
)
return(numeric(0))
} else {
na_cols <- which(all_na)
if (length(na_cols) > 0) {
x[na_cols, ] <- 0
x[, na_cols] <- 0
cli::cli_warn(
"The correlation matrix has missing values. \\
{length(na_cols)} column{?s} {?was/were} excluded from the filter."
)
}
}
if (any(is.na(x))) {
cli::cli_warn(
"The correlation matrix has sporadic missing values. \\
Some columns were excluded from the filter."
)
x[is.na(x)] <- 0
}
diag(x) <- 1
}
averageCorr <- colMeans(abs(x))
averageCorr <- as.numeric(as.factor(averageCorr))
x[lower.tri(x, diag = TRUE)] <- NA
combsAboveCutoff <- which(abs(x) > cutoff)
colsToCheck <- ceiling(combsAboveCutoff / nrow(x))
rowsToCheck <- combsAboveCutoff %% nrow(x)
colsToDiscard <- averageCorr[colsToCheck] > averageCorr[rowsToCheck]
rowsToDiscard <- !colsToDiscard
deletecol <- c(colsToCheck[colsToDiscard], rowsToCheck[rowsToDiscard])
deletecol <- unique(deletecol)
if (length(deletecol) > 0) {
deletecol <- colnames(x)[deletecol]
}
deletecol
}
tidy_filter <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(terms = unname(x$removals))
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names)
}
res$id <- x$id
res
}
#' @rdname tidy.recipe
#' @export
tidy.step_corr <- tidy_filter
#' @export
tunable.step_corr <- function(x, ...) {
tibble::tibble(
name = "threshold",
call_info = list(
list(pkg = "dials", fun = "threshold")
),
source = "recipe",
component = "step_corr",
component_id = x$id
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.