#' Impute via k-nearest neighbors
#'
#' `step_impute_knn()` creates a *specification* of a recipe step that will
#' impute missing data using nearest neighbors.
#'
#' @inheritParams step_impute_bag
#' @inheritParams step_center
#' @inheritParams step_pca
#' @param neighbors The number of neighbors.
#' @param options A named list of options to pass to [gower::gower_topn()].
#' Available options are currently `nthread` and `eps`.
#' @param ref_data A tibble of data that will reflect the data preprocessing
#' done up to the point of this imputation step. This is `NULL` until the step
#' is trained by [prep()].
#' @template step-return
#' @family imputation steps
#' @export
#' @details The step uses the training set to impute any other data sets. The
#' only distance function available is Gower's distance which can be used for
#' mixtures of nominal and numeric data.
#'
#' Once the nearest neighbors are determined, the mode is used to predictor
#' nominal variables and the mean is used for numeric data. Note that, if the
#' underlying data are integer, the mean will be converted to an integer too.
#'
#' Note that if a variable that is to be imputed is also in `impute_with`,
#' this variable will be ignored.
#'
#' It is possible that missing values will still occur after imputation if a
#' large majority (or all) of the imputing variables are also missing.
#'
#' As of `recipes` 0.1.16, this function name changed from `step_knnimpute()`
#' to `step_impute_knn()`.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble is returned with
#' columns `terms`, `predictors`, `neighbors` , and `id`:
#'
#' \describe{
#' \item{terms}{character, the selectors or variables selected}
#' \item{predictors}{character, selected predictors used to impute}
#' \item{neighbors}{integer, number of neighbors}
#' \item{id}{character, id of this step}
#' }
#'
#' ```{r, echo = FALSE, results="asis"}
#' step <- "step_impute_knn"
#' result <- knitr::knit_child("man/rmd/tunable-args.Rmd")
#' cat(result)
#' ```
#'
#' @template case-weights-not-supported
#'
#' @references Gower, C. (1971) "A general coefficient of similarity and some
#' of its properties," Biometrics, 857-871.
#' @examplesIf rlang::is_installed("modeldata")
#' library(recipes)
#' data(biomass, package = "modeldata")
#'
#' biomass_tr <- biomass[biomass$dataset == "Training", ]
#' biomass_te <- biomass[biomass$dataset == "Testing", ]
#' biomass_te_whole <- biomass_te
#'
#' # induce some missing data at random
#' set.seed(9039)
#' carb_missing <- sample(1:nrow(biomass_te), 3)
#' nitro_missing <- sample(1:nrow(biomass_te), 3)
#'
#' biomass_te$carbon[carb_missing] <- NA
#' biomass_te$nitrogen[nitro_missing] <- NA
#'
#' rec <- recipe(
#' HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#' data = biomass_tr
#' )
#'
#' ratio_recipe <- rec %>%
#' step_impute_knn(all_predictors(), neighbors = 3)
#' ratio_recipe2 <- prep(ratio_recipe, training = biomass_tr)
#' imputed <- bake(ratio_recipe2, biomass_te)
#'
#' # how well did it work?
#' summary(biomass_te_whole$carbon)
#' cbind(
#' before = biomass_te_whole$carbon[carb_missing],
#' after = imputed$carbon[carb_missing]
#' )
#'
#' summary(biomass_te_whole$nitrogen)
#' cbind(
#' before = biomass_te_whole$nitrogen[nitro_missing],
#' after = imputed$nitrogen[nitro_missing]
#' )
#'
#' tidy(ratio_recipe, number = 1)
#' tidy(ratio_recipe2, number = 1)
step_impute_knn <-
function(recipe,
...,
role = NA,
trained = FALSE,
neighbors = 5,
impute_with = imp_vars(all_predictors()),
options = list(nthread = 1, eps = 1e-08),
ref_data = NULL,
columns = NULL,
skip = FALSE,
id = rand_id("impute_knn")) {
if (is.null(impute_with)) {
cli::cli_abort("{.arg impute_with} must not be empty.")
}
if (!is.list(options)) {
cli::cli_abort("{.arg options} should be a named list.")
}
opt_nms <- names(options)
if (length(options) > 0) {
if (any(!(opt_nms %in% c("eps", "nthread")))) {
cli::cli_abort(
"Valid values for {.arg options} are {.val eps} and {.val nthread}."
)
}
if (all(opt_nms != "nthread")) {
options$nthread <- 1
}
if (all(opt_nms != "eps")) {
options$eps <- 1e-08
}
} else {
options <- list(nthread = 1, eps = 1e-08)
}
add_step(
recipe,
step_impute_knn_new(
terms = enquos(...),
role = role,
trained = trained,
neighbors = neighbors,
impute_with = impute_with,
ref_data = ref_data,
options = options,
columns = columns,
skip = skip,
id = id
)
)
}
step_impute_knn_new <-
function(terms, role, trained, neighbors, impute_with, ref_data, options,
columns, skip, id) {
step(
subclass = "impute_knn",
terms = terms,
role = role,
trained = trained,
neighbors = neighbors,
impute_with = impute_with,
ref_data = ref_data,
options = options,
columns = columns,
skip = skip,
id = id
)
}
#' @export
prep.step_impute_knn <- function(x, training, info = NULL, ...) {
check_number_whole(x$neighbors, arg = "neighbors", min = 1)
var_lists <-
impute_var_lists(
to_impute = x$terms,
impute_using = x$impute_with,
training = training,
info = info
)
all_x_vars <- lapply(var_lists, function(x) c(x$x, x$y))
all_x_vars <- unique(unlist(all_x_vars))
step_impute_knn_new(
terms = x$terms,
role = x$role,
trained = TRUE,
neighbors = x$neighbors,
impute_with = x$impute_with,
ref_data = training[, all_x_vars],
options = x$options,
columns = var_lists,
skip = x$skip,
id = x$id
)
}
nn_index <- function(miss_data, ref_data, vars, K, opt) {
gower_topn(
ref_data[, vars],
miss_data[, vars],
n = K,
nthread = opt$nthread,
eps = opt$eps
)$index
}
nn_pred <- function(index, dat) {
dat <- dat[index, ]
dat <- dat[[names(dat)]]
dat <- dat[!is.na(dat)]
est <- if (is.factor(dat) | is.character(dat)) {
mode_est(dat)
} else {
mean(dat)
}
est
}
#' @export
bake.step_impute_knn <- function(object, new_data, ...) {
col_names <- purrr::map_chr(object$columns, "y")
all_cols <- unique(unlist(object$columns, recursive = TRUE))
check_new_data(all_cols, object, new_data)
missing_rows <- !vec_detect_complete(new_data)
if (!any(missing_rows)) {
return(new_data)
}
names(object$columns) <- col_names
old_data <- new_data
for (col_name in col_names) {
missing_rows <- !vec_detect_complete(new_data[, col_name])
if (!any(missing_rows)) {
next
}
preds <- object$columns[[col_name]]$x
imp_data <- old_data[missing_rows, preds, drop = FALSE]
## do a better job of checking this:
if (all(is.na(imp_data))) {
cli::cli_warn("All predictors are missing; cannot impute.")
} else {
imp_var_complete <- !is.na(object$ref_data[[col_name]])
nn_ind <- nn_index(
object$ref_data[imp_var_complete, ],
imp_data, preds,
object$neighbors,
object$options
)
pred_vals <-
apply(nn_ind, 2, nn_pred, dat = object$ref_data[imp_var_complete, col_name])
pred_vals <- cast(pred_vals, object$ref_data[[col_name]])
new_data[[col_name]] <- vec_cast(new_data[[col_name]], pred_vals)
new_data[missing_rows, col_name] <- pred_vals
}
}
new_data
}
#' @export
print.step_impute_knn <-
function(x, width = max(20, options()$width - 31), ...) {
all_y_vars <- lapply(x$columns, function(x) x$y)
all_y_vars <- unique(unlist(all_y_vars))
title <- "K-nearest neighbor imputation for "
print_step(all_y_vars, x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_impute_knn <- function(x, ...) {
if (is_trained(x)) {
terms <- purrr::map(x$columns, function(x) unname(x$y))
predictors <- purrr::map(x$columns, function(x) unname(x$x))
res <- tibble(terms = terms, predictors = predictors)
res <- tidyr::unchop(
data = res,
cols = tidyselect::all_of(c("terms", "predictors")),
ptype = list(terms = character(), predictors = character())
)
res$neighbors <- rep(x$neighbors, nrow(res))
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names, predictors = na_chr, neighbors = x$neighbors)
}
res$id <- x$id
res
}
#' @export
tunable.step_impute_knn <- function(x, ...) {
tibble::tibble(
name = "neighbors",
call_info = list(list(pkg = "dials", fun = "neighbors", range = c(1L, 10L))),
source = "recipe",
component = "step_impute_knn",
component_id = x$id
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.