library(testthat)
library(recipes)
n <- 20
set.seed(1)
ex_dat <- data.frame(
x1 = exp(rnorm(n, mean = .1)),
x2 = 1 / rnorm(n),
x3 = rep(1:2, each = n / 2),
x4 = rexp(n)
)
## from `car` package
exp_lambda <- c(
x1 = -0.2727204451,
x2 = 1.139292543,
x3 = NA,
x4 = -1.012702061
)
exp_dat <- structure(list(
x1 = c(
0.435993557749438, 0.754696454247318, 0.371327932207827,
1.46113017436327, 0.82204097731098, 0.375761562702297, 0.89751975937422,
1.02175936118846, 0.940739811377902, 0.54984302797741, 1.41856737837093,
0.850587387615876, 0.437701618670981, 0.112174615510591, 1.21942112715274,
0.654589551748501, 0.666780580127795, 1.12625135443351, 1.0636850911955,
0.949680956411546
),
x2 = c(
1.15307873387121, 1.36532999080347,
17.4648439780388, -0.487746797875704, 1.74452440065935, -13.3640721541574,
-5.35805967319061, -0.653901985285932, -1.90735599477338, 2.65253432454371,
0.76771137336975, -7.79484535687973, 2.87484976680907, -13.8738947581599,
-0.696856395842167, -2.17745353101028, -2.28384276604207, -12.7261652971783,
0.95585544349634, 1.40099012093008
),
x3 = c(
1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L
),
x4 = c(
0.49061104973894, 0.49670370366879, 0.338742419511653,
0.663722100577351, 0.296260662322359, 0.681346128666408,
0.757581280603711, 0.357148961119583, 0.371872889850153,
0.49239057672598, 0.173259524331095, 0.235933290139909, 0.52297977893566,
0.434927187456966, 0.0822501770191215, 0.523479652016858,
0.197977570919824, 0.608108816144845, 0.821913792446345,
0.300608495427594
)
),
.Names = c("x1", "x2", "x3", "x4"),
row.names = c(
NA,
-20L
),
class = "data.frame"
)
test_that("simple YJ trans", {
rec <- recipe(~., data = ex_dat) %>%
step_YeoJohnson(x1, x2, x3, x4, id = "")
yj_tibble_un <-
tibble(
terms = c("x1", "x2", "x3", "x4"),
value = rep(na_dbl, 4),
id = ""
)
expect_equal(yj_tibble_un, tidy(rec, number = 1))
rec_trained <- prep(rec, training = ex_dat, verbose = FALSE)
rec_trans <- bake(rec_trained, new_data = ex_dat)
expect_equal(names(exp_lambda)[!is.na(exp_lambda)], names(rec_trained$steps[[1]]$lambdas))
expect_equal(exp_lambda[!is.na(exp_lambda)], rec_trained$steps[[1]]$lambdas, tolerance = .001)
expect_equal(as.matrix(exp_dat), as.matrix(rec_trans), tolerance = .05)
})
test_that("missing data", {
ex_dat$x1[1] <- NA
rec_true <- recipe(~., data = ex_dat) %>%
step_YeoJohnson(x1, x2, x3, x4)
expect_no_error(prep(rec_true, training = ex_dat, verbose = FALSE))
rec_false <- recipe(~., data = ex_dat) %>%
step_YeoJohnson(x1, x2, x3, x4, na_rm = FALSE)
expect_snapshot(error = TRUE,
prep(rec_false, training = ex_dat, verbose = FALSE)
)
})
# Infrastructure ---------------------------------------------------------------
test_that("bake method errors when needed non-standard role columns are missing", {
rec <- recipe(~., data = ex_dat) %>%
step_YeoJohnson(x1, x2, x3, x4, id = "") %>%
update_role(x1, x2, x3, x4, new_role = "potato") %>%
update_role_requirements(role = "potato", bake = FALSE)
rec_trained <- prep(rec, training = ex_dat, verbose = FALSE)
expect_snapshot(error = TRUE, bake(rec_trained, new_data = ex_dat[, 1:2]))
})
test_that("empty printing", {
rec <- recipe(mpg ~ ., mtcars)
rec <- step_YeoJohnson(rec)
expect_snapshot(rec)
rec <- prep(rec, mtcars)
expect_snapshot(rec)
})
test_that("empty selection prep/bake is a no-op", {
rec1 <- recipe(mpg ~ ., mtcars)
rec2 <- step_YeoJohnson(rec1)
rec1 <- prep(rec1, mtcars)
rec2 <- prep(rec2, mtcars)
baked1 <- bake(rec1, mtcars)
baked2 <- bake(rec2, mtcars)
expect_identical(baked1, baked2)
})
test_that("empty selection tidy method works", {
rec <- recipe(mpg ~ ., mtcars)
rec <- step_YeoJohnson(rec)
expect <- tibble(terms = character(), value = double(), id = character())
expect_identical(tidy(rec, number = 1), expect)
rec <- prep(rec, mtcars)
expect_identical(tidy(rec, number = 1), expect)
})
test_that("printing", {
rec <- recipe(~., data = ex_dat) %>%
step_YeoJohnson(x1, x2, x3, x4)
expect_snapshot(print(rec))
expect_snapshot(prep(rec))
})
test_that("bad args", {
expect_snapshot(
recipe(~., data = ex_dat) %>%
step_YeoJohnson(x1, x2, x3, x4, na_rm = "yes") %>%
prep(),
error = TRUE
)
expect_snapshot(
recipe(~., data = ex_dat) %>%
step_YeoJohnson(x1, x2, x3, x4, num_unique = "yes") %>%
prep(),
error = TRUE
)
expect_snapshot(
recipe(~., data = ex_dat) %>%
step_YeoJohnson(x1, x2, x3, x4, limits = NA_real_) %>%
prep(),
error = TRUE
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.