test_that("shrunken centroids", {
library(dplyr)
library(purrr)
library(hardhat)
# ----------------------------------------------------------------------------
set.seed(1)
nsc_test <-
tibble(
x = rnorm(300),
y = rnorm(300),
class = rep(letters[1:3], each = 100)
)
# make completely separable
nsc_test$x[nsc_test$class == "a"] <- nsc_test$x[nsc_test$class == "a"] + 8
nsc_test$y[nsc_test$class == "b"] <- nsc_test$y[nsc_test$class == "b"] - 8
# ----------------------------------------------------------------------------
nsc_rec_zero <-
recipe(class ~ x + y, data = nsc_test) %>%
step_classdist_shrunken(
all_numeric_predictors(),
class = "class",
threshold = 0
) %>%
prep()
exp_res <-
dplyr::tibble(
variable = character(0),
class = character(0),
global = numeric(0),
by_class = numeric(0),
shrunken = numeric(0),
std_dev = numeric(0)
)
cent_zero <- nsc_rec_zero$steps[[1]]$objects
expect_equal(cent_zero[0,], exp_res)
expect_equal(nrow(cent_zero), 6)
expect_true(!any(cent_zero$shrunken == 0))
expect_equal(
names(bake(nsc_rec_zero, new_data = NULL)),
c("x", "y", "class", "classdist_a", "classdist_b", "classdist_c")
)
# ----------------------------------------------------------------------------
nsc_rec_one <-
recipe(class ~ x + y, data = nsc_test) %>%
step_classdist_shrunken(
all_numeric_predictors(),
class = "class",
threshold = 1,
log = FALSE,
prefix = "potato_"
) %>%
prep()
cent_one <- nsc_rec_one$steps[[1]]$objects
expect_equal(cent_one[0,], exp_res)
expect_equal(nrow(cent_one), 6)
expect_true(all(cent_one$shrunken == 0))
expect_equal(
names(bake(nsc_rec_one, new_data = NULL)),
c("x", "y", "class", "potato_a", "potato_b", "potato_c")
)
# ----------------------------------------------------------------------------
nsc_rec_half <-
recipe(class ~ x + y, data = nsc_test) %>%
step_classdist_shrunken(
all_numeric_predictors(),
class = "class",
threshold = 1 / 2,
keep_original_cols = FALSE
)
nsc_rec_half_prep <- prep(nsc_rec_half)
expect_snapshot(print(nsc_rec_half))
expect_snapshot(print(nsc_rec_half_prep))
tidy_spec <- tidy(nsc_rec_half, 1)
tidy_prep <- tidy(nsc_rec_half_prep, 1)
expect_snapshot(print(tidy_spec))
expect_snapshot(print(tidy_prep))
expect_equal(
names(bake(nsc_rec_half_prep, new_data = NULL)),
c("class", "classdist_a", "classdist_b", "classdist_c")
)
# ----------------------------------------------------------------------------
expect_snapshot(
recipe(class ~ x + y, data = nsc_test) %>%
step_classdist_shrunken(
all_numeric_predictors(),
class = "class",
threshold = -1
) %>% prep(),
error = TRUE
)
expect_snapshot(
recipe(class ~ x + y, data = nsc_test) %>%
step_classdist_shrunken(
all_numeric_predictors(),
class = "class",
sd_offset = -1
) %>% prep(),
error = TRUE
)
expect_snapshot(
recipe(class ~ x + y, data = nsc_test) %>%
step_classdist_shrunken(
all_numeric_predictors(),
class = "class",
log = 2
) %>% prep(),
error = TRUE
)
expect_snapshot(
recipe(class ~ x + y, data = nsc_test) %>%
step_classdist_shrunken(
all_numeric_predictors(),
class = "class",
prefix = 2
) %>% prep(),
error = TRUE
)
# ------------------------------------------------------------------------------
nsc_test$weights <- importance_weights(1:nrow(nsc_test))
nsc_rec_weights <-
recipe(class ~ ., data = nsc_test) %>%
step_classdist_shrunken(
all_numeric_predictors(),
class = "class",
threshold = 1 / 2,
keep_original_cols = FALSE
)
nsc_rec_weights_prep <- prep(nsc_rec_weights)
tidy_weights_prep <- tidy(nsc_rec_weights_prep, 1)
global_unwt <- tidy_prep %>% dplyr::filter(type == "global") %>% pluck("value")
global_wt <- tidy_weights_prep %>% dplyr::filter(type == "global") %>% pluck("value")
expect_true(all(global_unwt != global_wt))
expect_equal(unique(tidy_weights_prep$terms), c("x", "y"))
# ------------------------------------------------------------------------------
expect_equal(
required_pkgs(nsc_rec_weights),
c("recipes", "dplyr", "tidyr")
)
})
test_that("tunable", {
rec <-
recipe(~., data = iris) %>%
step_classdist_shrunken(all_predictors())
rec_param <- tunable.step_classdist_shrunken(rec$steps[[1]])
expect_equal(rec_param$name, "threshold")
expect_true(all(rec_param$source == "recipe"))
expect_true(is.list(rec_param$call_info))
expect_equal(nrow(rec_param), 1)
expect_equal(
names(rec_param),
c("name", "call_info", "source", "component", "component_id")
)
})
# Infrastructure ---------------------------------------------------------------
test_that("bake method errors when needed non-standard role columns are missing", {
rec <- recipe(Species ~ ., data = iris) %>%
step_classdist_shrunken(Petal.Length, class = "Species", log = FALSE) %>%
update_role(Petal.Length, new_role = "potato") %>%
update_role_requirements(role = "potato", bake = FALSE)
trained <- prep(rec, training = iris, verbose = FALSE)
expect_snapshot(error = TRUE, bake(trained, new_data = iris[,c(-3)]))
})
test_that("empty printing", {
rec <- recipe(Species ~ ., iris)
rec <- step_classdist_shrunken(rec, class = "Species")
expect_snapshot(rec)
rec <- prep(rec, iris)
expect_snapshot(rec)
})
test_that("empty selection prep/bake is a no-op", {
rec1 <- recipe(Species ~ ., iris)
rec2 <- step_classdist_shrunken(rec1, class = "Species")
rec1 <- prep(rec1, iris)
rec2 <- prep(rec2, iris)
baked1 <- bake(rec1, iris)
baked2 <- bake(rec2, iris)
expect_identical(baked1, baked2)
})
test_that("empty selection tidy method works", {
rec <- recipe(Species ~ ., iris)
rec <- step_classdist_shrunken(rec, class = "Species")
expect <- tibble(
terms = character(),
value = double(),
class = character(),
type = character(),
threshold = double(),
id = character()
)
expect_identical(tidy(rec, number = 1), expect)
rec <- prep(rec, iris)
expect_identical(tidy(rec, number = 1), expect)
})
test_that("keep_original_cols works", {
new_names <- c("Species", "classdist_setosa", "classdist_versicolor",
"classdist_virginica")
rec <- recipe(Species ~ Sepal.Length, data = iris) %>%
step_classdist_shrunken(all_predictors(), class = "Species",
keep_original_cols = FALSE)
rec <- prep(rec)
res <- bake(rec, new_data = NULL)
expect_equal(
colnames(res),
new_names
)
rec <- recipe(Species ~ Sepal.Length, data = iris) %>%
step_classdist_shrunken(all_predictors(), class = "Species",
keep_original_cols = TRUE)
rec <- prep(rec)
res <- bake(rec, new_data = NULL)
expect_equal(
colnames(res),
c("Sepal.Length", new_names)
)
})
test_that("keep_original_cols - can prep recipes with it missing", {
# step_classdist_shrunken() was added after keep_original_cols
# Making this test case unlikely
expect_true(TRUE)
})
test_that("printing", {
rec <- recipe(Species ~ ., data = iris) %>%
step_classdist_shrunken(all_predictors(), class = "Species")
expect_snapshot(print(rec))
expect_snapshot(prep(rec))
})
test_that("tunable is setup to work with extract_parameter_set_dials", {
skip_if_not_installed("dials")
rec <- recipe(~., data = mtcars) %>%
step_classdist_shrunken(
all_predictors(), threshold = hardhat::tune()
)
params <- extract_parameter_set_dials(rec)
expect_s3_class(params, "parameters")
expect_identical(nrow(params), 1L)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.