library(testthat)
library(recipes)
n <- 50
set.seed(424)
dat <- data.frame(
x1 = rnorm(n),
x2 = rep(1:5, each = 10),
x3 = factor(rep(letters[1:3], c(2, 2, 46))),
x4 = 1,
y = runif(n)
)
ratios <- function(x) {
tab <- sort(table(x), decreasing = TRUE)
if (length(tab) > 1) {
tab[1] / tab[2]
} else {
Inf
}
}
pct_uni <- vapply(dat[, -5], function(x) length(unique(x)), c(val = 0)) / nrow(dat) * 100
f_ratio <- vapply(dat[, -5], ratios, c(val = 0))
vars <- names(pct_uni)
test_that("nzv filtering", {
rec <- recipe(y ~ ., data = dat)
filtering <- rec %>%
step_nzv(x1, x2, x3, x4, id = "")
exp_tidy_un <- tibble(terms = c("x1", "x2", "x3", "x4"), id = "")
expect_equal(exp_tidy_un, tidy(filtering, number = 1))
filtering_trained <- prep(filtering, training = dat, verbose = FALSE)
removed <- vars[
pct_uni <= filtering_trained$steps[[1]]$unique_cut &
f_ratio >= filtering_trained$steps[[1]]$freq_cut
]
exp_tidy_tr <- tibble(terms = removed, id = "")
expect_equal(exp_tidy_tr, tidy(filtering_trained, number = 1))
expect_equal(filtering_trained$steps[[1]]$removals, removed)
})
test_that("altered freq_cut and unique_cut", {
rec <- recipe(y ~ ., data = dat)
filtering <- rec %>%
step_nzv(x1, x2, x3, x4, freq_cut = 50, unique_cut = 10)
filtering_trained <- prep(filtering, training = dat, verbose = FALSE)
removed <- vars[
pct_uni <= filtering_trained$steps[[1]]$unique_cut &
f_ratio >= filtering_trained$steps[[1]]$freq_cut
]
expect_equal(filtering_trained$steps[[1]]$removals, removed)
expect_snapshot_error(
rec %>%
step_nzv(x1, x2, x3, x4, options = list(freq_cut = 50, unique_cut = 10))
)
})
test_that("Deprecation warning", {
expect_snapshot(error = TRUE,
recipe(~ ., data = mtcars) %>%
step_nzv(options = list(freq_cut = 95 / 5, unique_cut = 20))
)
})
test_that("tunable", {
rec <-
recipe(~., data = iris) %>%
step_nzv(all_predictors())
rec_param <- tunable.step_nzv(rec$steps[[1]])
expect_equal(rec_param$name, c("freq_cut", "unique_cut"))
expect_true(all(rec_param$source == "recipe"))
expect_true(is.list(rec_param$call_info))
expect_equal(nrow(rec_param), 2)
expect_equal(
names(rec_param),
c("name", "call_info", "source", "component", "component_id")
)
})
test_that("nzv with case weights", {
weighted_int_counts <- dat %>% count(x3, wt = x2, sort = TRUE)
exp_freq_cut_int <- weighted_int_counts$n[1] / weighted_int_counts$n[2]
dat_caseweights_x2 <- dat %>%
mutate(x2 = frequency_weights(x2))
expect_equal(
recipe(~., dat_caseweights_x2) %>%
step_nzv(all_predictors(), freq_cut = exp_freq_cut_int) %>%
prep() %>%
tidy(1) %>%
pull(terms),
c("x4")
)
expect_equal(
recipe(~., dat_caseweights_x2) %>%
step_nzv(all_predictors(), freq_cut = exp_freq_cut_int - 0.0001) %>%
prep() %>%
tidy(1) %>%
pull(terms),
c("x3", "x4")
)
weighted_frag_counts <- dat %>% count(x3, wt = y, sort = TRUE)
exp_freq_cut_frag <- weighted_frag_counts$n[1] / weighted_frag_counts$n[2]
expect_snapshot(
recipe(~., dat_caseweights_x2) %>%
step_nzv(all_predictors(), freq_cut = exp_freq_cut_int) %>%
prep()
)
# ----------------------------------------------------------------------------
weighted_int_counts <- dat %>% count(x3, wt = x2, sort = TRUE)
exp_freq_cut_int <- weighted_int_counts$n[1] / weighted_int_counts$n[2]
dat_caseweights_x2 <- dat %>%
mutate(x2 = importance_weights(x2))
expect_equal(
recipe(~., dat_caseweights_x2) %>%
step_nzv(all_predictors(), freq_cut = exp_freq_cut_int) %>%
prep() %>%
tidy(1) %>%
pull(terms),
c("x4")
)
expect_equal(
recipe(~., dat_caseweights_x2) %>%
step_nzv(all_predictors(), freq_cut = exp_freq_cut_int - 0.0001) %>%
prep() %>%
tidy(1) %>%
pull(terms),
c("x4")
)
weighted_frag_counts <- dat %>% count(x3, wt = y, sort = TRUE)
exp_freq_cut_frag <- weighted_frag_counts$n[1] / weighted_frag_counts$n[2]
dat_caseweights_y <- dat %>%
mutate(y = importance_weights(y))
expect_equal(
recipe(~., dat_caseweights_y) %>%
step_nzv(all_predictors(), freq_cut = exp_freq_cut_frag) %>%
prep() %>%
tidy(1) %>%
pull(terms),
c("x3", "x4")
)
expect_equal(
recipe(~., dat_caseweights_y) %>%
step_nzv(all_predictors(), freq_cut = exp_freq_cut_frag - 0.0001) %>%
prep() %>%
tidy(1) %>%
pull(terms),
c("x3", "x4")
)
expect_snapshot(
recipe(~., dat_caseweights_y) %>%
step_nzv(all_predictors(), freq_cut = exp_freq_cut_frag - 0.0001) %>%
prep()
)
})
# Infrastructure ---------------------------------------------------------------
test_that("bake method errors when needed non-standard role columns are missing", {
# Here for completeness
# step_nzv() removes variables and thus does not care if they are not there.
expect_true(TRUE)
})
test_that("empty printing", {
rec <- recipe(mpg ~ ., mtcars)
rec <- step_nzv(rec)
expect_snapshot(rec)
rec <- prep(rec, mtcars)
expect_snapshot(rec)
})
test_that("empty selection prep/bake is a no-op", {
rec1 <- recipe(mpg ~ ., mtcars)
rec2 <- step_nzv(rec1)
rec1 <- prep(rec1, mtcars)
rec2 <- prep(rec2, mtcars)
baked1 <- bake(rec1, mtcars)
baked2 <- bake(rec2, mtcars)
expect_identical(baked1, baked2)
})
test_that("empty selection tidy method works", {
rec <- recipe(mpg ~ ., mtcars)
rec <- step_nzv(rec)
expect <- tibble(terms = character(), id = character())
expect_identical(tidy(rec, number = 1), expect)
rec <- prep(rec, mtcars)
expect_identical(tidy(rec, number = 1), expect)
})
test_that("printing", {
rec <- recipe(y ~ ., data = dat) %>%
step_nzv(x1, x2, x3, x4)
expect_snapshot(print(rec))
expect_snapshot(prep(rec))
})
test_that("tunable is setup to work with extract_parameter_set_dials", {
skip_if_not_installed("dials")
rec <- recipe(~., data = mtcars) %>%
step_nzv(
all_predictors(),
freq_cut = hardhat::tune(), unique_cut = hardhat::tune()
)
params <- extract_parameter_set_dials(rec)
expect_s3_class(params, "parameters")
expect_identical(nrow(params), 2L)
})
test_that("bad args", {
expect_snapshot(
recipe(y ~ ., data = dat) %>%
step_nzv(x1, freq_cut = -1) %>%
prep(),
error = TRUE
)
expect_snapshot(
recipe(y ~ ., data = dat) %>%
step_nzv(x1, unique_cut = 101) %>%
prep(),
error = TRUE
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.