test_that("conf_bound interface", {
expect_snapshot(error = TRUE, conf_bound("a"))
expect_snapshot(error = TRUE, conf_bound(function() 1))
test_res <- tibble::tibble(.mean = 1:10, .sd = c((1:9) / 10, NA_real_))
expect_snapshot(
error = TRUE,
predict(conf_bound(), test_res, maximize = 2, iter = 1)
)
})
test_that("conf_bound calculations", {
test_res <- tibble::tibble(.mean = 1:10, .sd = c((1:9) / 10, NA_real_))
dbled <- function(x) x^2
expect_equal(
predict(conf_bound(kappa = 1), test_res, maximize = TRUE, iter = 1),
test_res %>% mutate(objective = .mean + 1 * .sd) %>% select(objective)
)
expect_equal(
predict(conf_bound(2), test_res, maximize = TRUE, iter = 1),
test_res %>% mutate(objective = .mean + 2 * .sd) %>% select(objective)
)
expect_equal(
predict(conf_bound(dbled), test_res, maximize = TRUE, iter = 2),
test_res %>% mutate(objective = .mean + 4 * .sd) %>% select(objective)
)
expect_equal(
predict(conf_bound(kappa = 1), test_res, maximize = FALSE, iter = 1),
test_res %>% mutate(objective = -(.mean + 1 * .sd)) %>% select(objective)
)
})
# ------------------------------------------------------------------------------
test_that("prob_improve interface", {
test_res <- tibble::tibble(.mean = 1:10, .sd = c((1:9) / 10, NA_real_))
expect_snapshot(error = TRUE, prob_improve("a"))
expect_snapshot(error = TRUE, prob_improve(function() 1))
expect_snapshot(error = TRUE, predict(prob_improve(), test_res, maximize = 2, iter = 1))
expect_snapshot(error = TRUE, predict(prob_improve(), test_res, maximize = TRUE, iter = 1, best = NA))
expect_snapshot(error = TRUE, predict(prob_improve(), test_res, maximize = TRUE, iter = 1, best = "WAT"))
})
test_that("prob_improve calculations", {
test_res <- tibble::tibble(.mean = 1:10, .sd = c((1:9) / 10, NA_real_))
dbled <- function(x) x^2
expect_equal(
predict(prob_improve(), test_res, maximize = TRUE, iter = 1, best = 15),
test_res %>%
mutate(objective = pnorm((.mean - 15) / .sd)) %>%
select(objective)
)
expect_equal(
predict(prob_improve(), test_res, maximize = FALSE, iter = 1, best = -2),
test_res %>%
mutate(objective = pnorm((-2 - .mean) / .sd)) %>%
select(objective)
)
expect_equal(
predict(prob_improve(.1), test_res, maximize = TRUE, iter = 1, best = 15),
test_res %>%
mutate(objective = pnorm((.mean - 15 - .1) / .sd)) %>%
select(objective)
)
expect_equal(
predict(prob_improve(.1), test_res, maximize = FALSE, iter = 1, best = -2),
test_res %>%
mutate(objective = pnorm((-2 + .1 - .mean) / .sd)) %>%
select(objective)
)
expect_equal(
predict(prob_improve(dbled), test_res, maximize = TRUE, iter = 2, best = 15),
test_res %>%
mutate(objective = pnorm((.mean - 15 - 4) / .sd)) %>%
select(objective)
)
expect_equal(
predict(prob_improve(dbled), test_res, maximize = FALSE, iter = 4, best = -2),
test_res %>%
mutate(objective = pnorm((-2 + 16 - .mean) / .sd)) %>%
select(objective)
)
})
# ------------------------------------------------------------------------------
test_that("exp_improve interface", {
test_res <- tibble::tibble(.mean = 1:10, .sd = c((1:9) / 10, NA_real_))
expect_snapshot(error = TRUE, exp_improve("a"))
expect_snapshot(error = TRUE, exp_improve(function() 2))
expect_snapshot(error = TRUE, predict(exp_improve(), test_res, maximize = 2, iter = 1))
expect_snapshot(error = TRUE, predict(exp_improve(), test_res, maximize = TRUE, iter = 1, best = NA))
expect_snapshot(error = TRUE, predict(exp_improve(), test_res, maximize = TRUE, iter = 1, best = "WAT"))
})
test_that("exp_improve calculations", {
test_res <- tibble::tibble(.mean = 1:10, .sd = c((1:9) / 10, NA_real_))
dbled <- function(x) x^2
expect_equal(
predict(exp_improve(), test_res, maximize = TRUE, iter = 1, best = 15),
test_res %>%
mutate(
diff = .mean - 15,
objective = (diff * pnorm(diff / .sd)) + (.sd * dnorm(diff / .sd))
) %>%
select(objective)
)
expect_equal(
predict(exp_improve(), test_res, maximize = FALSE, iter = 1, best = 15),
test_res %>%
mutate(
diff = 15 - .mean,
objective = (diff * pnorm(diff / .sd)) + (.sd * dnorm(diff / .sd))
) %>%
select(objective)
)
expect_equal(
predict(exp_improve(1), test_res, maximize = TRUE, iter = 1, best = 15),
test_res %>%
mutate(
diff = .mean - 16,
objective = (diff * pnorm(diff / .sd)) + (.sd * dnorm(diff / .sd))
) %>%
select(objective)
)
expect_equal(
predict(exp_improve(1), test_res, maximize = FALSE, iter = 1, best = 15),
test_res %>%
mutate(
diff = 16 - .mean,
objective = (diff * pnorm(diff / .sd)) + (.sd * dnorm(diff / .sd))
) %>%
select(objective)
)
expect_equal(
predict(exp_improve(dbled), test_res, maximize = TRUE, iter = 2, best = 15),
test_res %>%
mutate(
diff = .mean - 19,
objective = (diff * pnorm(diff / .sd)) + (.sd * dnorm(diff / .sd))
) %>%
select(objective)
)
expect_equal(
predict(exp_improve(dbled), test_res, maximize = FALSE, iter = 2, best = 15),
test_res %>%
mutate(
diff = 19 - .mean,
objective = (diff * pnorm(diff / .sd)) + (.sd * dnorm(diff / .sd))
) %>%
select(objective)
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.