library(vetiver)
library(plumber)
library(keras)
scaled_cars <- as.matrix(mtcars) %>% scale()
x_test <- scaled_cars[26:32, 2:ncol(scaled_cars)]
x_train <- scaled_cars[1:25, 2:ncol(scaled_cars)]
y_train <- scaled_cars[1:25, 1, drop = FALSE]
set.seed(1)
keras_fit <-
keras_model_sequential(input_shape = ncol(x_train)) %>%
layer_dense(units = 1, activation = 'linear') %>%
compile(
loss = 'mean_squared_error',
optimizer = optimizer_adam(learning_rate = .01)
)
keras_fit %>%
fit(
x = x_train, y = y_train,
epochs = 100, batch_size = 1,
verbose = 0
)
v <- vetiver_model(keras_fit, "cars-keras", prototype_data = data.frame(x_train)[1,])
## pr() %>% vetiver_api(v, debug = TRUE) %>% pr_run()
library(pins)
b <- board_connect()
b %>% vetiver_pin_write(v)
vetiver_deploy_rsconnect(
b,
"julia.silge/cars-keras",
predict_args = list(debug = TRUE),
account = "julia.silge"
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.