#' @templateVar class polr
#' @template title_desc_tidy
#'
#' @param x A `polr` object returned from [MASS::polr()].
#' @template param_confint
#' @template param_exponentiate
#' @param p.values Logical. Should p-values be returned,
#' based on chi-squared tests from [MASS::dropterm()]. Defaults to FALSE.
#' @template param_unused_dots
#'
#' @examplesIf rlang::is_installed("MASS")
#'
#' # load libraries for models and data
#' library(MASS)
#'
#' # fit model
#' fit <- polr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
#'
#' # summarize model fit with tidiers
#' tidy(fit, exponentiate = TRUE, conf.int = TRUE)
#'
#' glance(fit)
#' augment(fit, type.predict = "class")
#'
#' fit2 <- polr(factor(gear) ~ am + mpg + qsec, data = mtcars)
#'
#' tidy(fit, p.values = TRUE)
#'
#' @evalRd return_tidy(regression = TRUE)
#'
#' @details In `broom 0.7.0` the `coefficient_type` column was renamed to
#' `coef.type`, and the contents were changed as well. Now the contents
#' are `coefficient` and `scale`, rather than `coefficient` and `zeta`.
#'
#' Calculating p.values with the `dropterm()` function is the approach
#' suggested by the MASS package author. This
#' approach is computationally intensive so that p.values are only
#' returned if requested explicitly. Additionally, it only works for
#' models containing no variables with more than two categories. If this
#' condition is not met, a message is shown and NA is returned instead of
#' p-values.
#'
#' @aliases polr_tidiers
#' @export
#' @seealso [tidy], [MASS::polr()]
#' @family ordinal tidiers
tidy.polr <- function(x, conf.int = FALSE, conf.level = 0.95,
exponentiate = FALSE, p.values = FALSE, ...) {
ret <- as_tibble(coef(summary(x)), rownames = "term")
colnames(ret) <- c("term", "estimate", "std.error", "statistic")
if (conf.int) {
ci <- broom_confint_terms(x, level = conf.level)
ret <- dplyr::left_join(ret, ci, by = "term")
}
if (exponentiate) {
ret <- exponentiate(ret)
}
if (p.values) {
sig <- MASS::dropterm(x, test = "Chisq")
p <- sig %>%
dplyr::select(`Pr(Chi)`) %>%
dplyr::pull() %>%
.[-1]
terms <- purrr::map(rownames(sig)[-1], function(x) {
ret$term[stringr::str_detect(ret$term, stringr::fixed(x))]
}) %>% unlist()
if (length(p) == length(terms)) {
ret <- dplyr::left_join(ret, tibble::tibble(term = terms, p.value = p), by = "term")
} else {
cli::cli_inform(
"p-values can presently only be returned for models that contain
no categorical variables with more than two levels."
)
ret$p.value <- NA
}
}
mutate(
ret,
coef.type = if_else(term %in% names(x$zeta), "scale", "coefficient")
)
}
#' @templateVar class polr
#' @template title_desc_glance
#'
#' @inherit tidy.polr params examples
#'
#' @evalRd return_glance(
#' "edf",
#' "logLik",
#' "AIC",
#' "BIC",
#' "deviance",
#' "df.residual",
#' "nobs"
#' )
#'
#' @export
#' @seealso [tidy], [MASS::polr()]
#' @family ordinal tidiers
glance.polr <- function(x, ...) {
as_glance_tibble(
edf = x$edf,
logLik = as.numeric(stats::logLik(x)),
AIC = stats::AIC(x),
BIC = stats::BIC(x),
deviance = stats::deviance(x),
df.residual = stats::df.residual(x),
nobs = stats::nobs(x),
na_types = "irrrrii"
)
}
#' @templateVar class polr
#' @template title_desc_augment
#'
#' @inherit tidy.polr params examples
#' @template param_data
#' @template param_newdata
#'
#' @param type.predict Which type of prediction to compute,
#' passed to `MASS:::predict.polr()`. Only supports `"class"` at
#' the moment.
#'
#' @export
#' @seealso [tidy()], [MASS::polr()]
#' @family ordinal tidiers
#'
augment.polr <- function(x, data = model.frame(x), newdata = NULL,
type.predict = c("class"), ...) {
type <- rlang::arg_match(type.predict)
df <- if (is.null(newdata)) data else newdata
df <- as_augment_tibble(df)
df$.fitted <- predict(object = x, newdata = df, type = type)
df
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.