R/utilities.R

Defines functions check_ellipses warn_on_subclass broom_confint_terms broom_confint augment_newdata add_hat_sigma_cols data_error response augment_columns unrowname as_glance_tibble parse_na_types has_rownames map_as_tidy_tibble as_tidy_tibble is_cran_check as_augment_tibble exponentiate rename2

Documented in augment_columns

# Rename only those columns in a data frame that are present. Example:
#
# rename2(
#   tibble(dog = 1),
#   cat = dog,
#   mouse = gerbil
# )
#
rename2 <- function(.data, ...) {
  dots <- quos(...)
  present <- purrr::keep(dots, ~ quo_name(.x) %in% colnames(.data))
  rename(.data, !!!present)
}

exponentiate <- function(data, col = "estimate") {
  data <- data %>% mutate(across(all_of(col), exp))

  if ("conf.low" %in% colnames(data)) {
    data <- data %>% mutate(across(c(conf.low, conf.high), exp))
  }

  data
}

#' Coerce a data frame to a tibble
#'
#' A thin wrapper around [tibble::as_tibble()], except checks for
#' rownames and adds them to a new column `.rownames` if they are
#' interesting (i.e. more than `1, 2, 3, ...`). This function is
#' meant for use inside of `augment.*` methods.
#'
#' @param data A [base::data.frame()] or [tibble::tibble()].
#'
#' @return A `tibble` potentially with a `.rownames` column
#' @noRd
#'
as_augment_tibble <- function(data, arg = caller_arg(data), call = caller_env()) {
  if (inherits(data, "matrix") & is.null(colnames(data))) {
    cli::cli_abort(c(
      "{.arg {arg}} is an unnamed matrix.",
      "i" = "Please supply a matrix or data frame with column names."
    ))
  }

  tryCatch(
    df <- as_tibble(data),
    error = function(cnd) {
      cli::cli_abort(
        c(
          "Could not coerce {.arg {arg}} to a tibble.",
          "i" = "Try explicitly passing a data frame to either the {.arg data} or
                 {.arg newdata} argument."
        ),
        call = call
      )
    }
  )

  if (has_rownames(data)) {
    df <- tibble::add_column(df,
      .rownames = rownames(data),
      .before = TRUE
    )
  }
  df
}

# adapted from ps:::is_cran_check()
is_cran_check <- function() {
  if (identical(Sys.getenv("NOT_CRAN"), "true")) {
    FALSE
  } 
  else {
    Sys.getenv("_R_CHECK_PACKAGE_NAME_", "") != ""
  }
}

#' Convert a data.frame or matrix to a tibble
#'
#' This function is meant for use inside `tidy.*` methods.
#'
#' @param x a data.frame or matrix
#' @param new_names new column names, not including the rownames
#' @param new_col the name of the new rownames column
#'
#' @return a tibble with rownames moved into a column and new column
#' names assigned
#' @noRd
as_tidy_tibble <- function(x, new_names = NULL, new_column = "term") {
  if (!is.null(new_names) && length(new_names) != ncol(x)) {
    cli::cli_abort(
      "{.arg new names} must be {.code NULL} or have length equal to
       number of columns ({ncol(data)})."
    )
  }

  ret <- x

  # matrices will take setNames by element, so rename conditionally
  if (!is.null(new_names)) {
    if (inherits(x, "data.frame")) {
      ret <- setNames(x, new_names)
    } else {
      colnames(ret) <- new_names
    }
  }

  if (all(rownames(x) == seq_len(nrow(x)))) {
    # don't need to move rownames into a new column
    tibble::as_tibble(ret)
  } else {
    # don't use tibble rownames to col because of name repairing
    dplyr::bind_cols(
      !!new_column := rownames(x),
      tibble::as_tibble(ret)
    )
  }
}

#' @param x A list of data.frames or matrices
#' @param ... Extra arguments to pass to as_tidy_tibble
#' @param id_column The name of the column giving the name of each
#' element in `x`
#' @noRd
map_as_tidy_tibble <- function(x,
                               ...,
                               id_column = "component") {
  purrr::map_df(x,
    as_tidy_tibble,
    ...,
    .id = id_column
  )
}

# copied from modeltests. re-export if at some we Import modeltests rather
# than suggest it
has_rownames <- function(df) {
  if (tibble::is_tibble(df)) {
    return(FALSE)
  }
  any(rownames(df) != as.character(1:nrow(df)))
}

na_types_dict <- list(
  "r" = NA_real_,
  "i" = rlang::na_int,
  "c" = NA_character_,
  "l" = rlang::na_lgl
)

# a function that converts a string to a vector of NA types.
# e.g. "rri" -> c(NA_real_, NA_real_, rlang::na_int)
parse_na_types <- function(s) {
  positions <- purrr::map(
    stringr::str_split(s, pattern = ""),
    match,
    table = names(na_types_dict)
  ) %>%
    unlist()

  na_types_dict[positions] %>%
    unlist() %>%
    unname()
}

# a function that, given named arguments, will make a one-row
# tibble, switching out NULLs for the appropriate NA type.
as_glance_tibble <- function(..., na_types) {
  cols <- list(...)

  if (length(cols) != stringr::str_length(na_types)) {
    cli::cli_abort(
      "The number of columns provided does not match the number of 
       column {.emph types} provided."
    )
  }

  na_types_long <- parse_na_types(na_types)

  entries <- purrr::map2(
    cols,
    na_types_long,
    function(.x, .y) {
      if (length(.x) == 0) .y else .x
    }
  )

  tibble::as_tibble_row(entries)
}

# strip rownames from a data frame
unrowname <- function(x) {
  rownames(x) <- NULL
  x
}

#' Add fitted values, residuals, and other common outputs to
#' an augment call
#'
#' `augment_columns` is intended for use in the internals of `augment` methods
#' only and is exported for developers extending the broom package. Please
#' instead use [augment()] to appropriately make use of the functionality
#' in `augment_columns()`.
#'
#' Note that, in the case that a `residuals()` or `influence()` generic is
#' not implemented for the supplied model `x`, the function will fail quietly.
#'
#' @param x a model
#' @param data original data onto which columns should be added
#' @param newdata new data to predict on, optional
#' @param type Type of prediction and residuals to compute
#' @param type.predict Type of prediction to compute; by default
#' same as `type`
#' @param type.residuals Type of residuals to compute; by default
#' same as `type`
#' @param se.fit Value to pass to predict's `se.fit`, or NULL for
#' no value. Ignored for model types that do not accept an `se.fit`
#' argument
#' @param ... extra arguments (not used)
#'
#' @export
augment_columns <- function(x, data, newdata = NULL, type, type.predict = type,
                            type.residuals = type, se.fit = TRUE, ...) {
  notNAs <- function(o) {
    if (is.null(o) || all(is.na(o))) NULL else o
  }

  residuals0 <- purrr::possibly(stats::residuals, NULL)
  influence0 <- purrr::possibly(stats::influence, NULL)
  cooks.distance0 <- purrr::possibly(stats::cooks.distance, NULL)
  rstandard0 <- purrr::possibly(stats::rstandard, NULL)
  predict0 <- purrr::possibly(stats::predict, NULL)

  # call predict with arguments
  args <- list(x)
  if (!is.null(newdata)) {
    args$newdata <- newdata
  }
  if (!missing(type.predict)) {
    args$type <- type.predict[1]
  }
  if (!inherits(x, "betareg")) {
    args$se.fit <- se.fit
  }
  args <- c(args, list(...))


  if ("panelmodel" %in% class(x)) {
    # work around for panel models (plm)
    # stat::predict() returns wrong fitted values when applied to random or
    # fixed effect panel models [plm(..., model="random"), plm(, ..., model="within")]
    # It works only for pooled OLS models (plm( ..., model="pooling"))
    pred <- model.frame(x)[, 1] - residuals(x)
  } else {
    # suppress warning: geeglm objects complain about predict being used
    pred <- suppressWarnings(do.call(predict0, args))
  }

  if (is.null(pred)) {
    # try "fitted" instead- some objects don't have "predict" method
    pred <- do.call(stats::fitted, args)
  }

  if (is.list(pred)) {
    ret <- data.frame(.fitted = as.vector(pred$fit))
    ret$.se.fit <- as.vector(pred$se.fit)
  } else {
    ret <- data.frame(.fitted = as.vector(pred))
  }

  na_action <- if (isS4(x)) {
    attr(stats::model.frame(x), "na.action")
  } else {
    stats::na.action(x)
  }

  if (missing(newdata) || is.null(newdata)) {
    if (!missing(type.residuals)) {
      ret$.resid <- residuals0(x, type = type.residuals)
    } else {
      ret$.resid <- residuals0(x)
    }

    infl <- influence0(x, do.coef = FALSE)
    if (!is.null(infl)) {
      if (inherits(x, "gam")) {
        ret$.hat <- infl
        ret$.sigma <- NA
      } else {
        zero_weights <- "weights" %in% names(x) &&
          any(zero_weight_inds <- abs(x$weights) < .Machine$double.eps^0.5)
        if (zero_weights) {
          ret[c(".hat", ".sigma")] <- 0
          ret$.hat[!zero_weight_inds] <- infl$hat
          ret$.sigma[!zero_weight_inds] <- infl$sigma
        } else {
          ret$.hat <- infl$hat
          ret$.sigma <- infl$sigma
        }
      }
    }

    # if cooksd and rstandard can be computed and aren't all NA
    # (as they are in rlm), do so
    ret$.cooksd <- notNAs(cooks.distance0(x))
    ret$.std.resid <- notNAs(rstandard0(x))

    original <- data

    if (inherits(na_action, "exclude")) {
      # check if values are missing
      if (length(stats::residuals(x)) > nrow(data)) {
        cli::cli_warn(
          c(
            "When fitting with {.code na.exclude}, rows with {.code NA}s in
             original data will be dropped unless those rows are provided
             in the {.arg data} argument."
          )
        )
      }
    }
  } else {
    original <- newdata
  }

  if (is.null(na_action) || nrow(original) == nrow(ret)) {
    # no NAs were left out; we can simply recombine
    original <- as_augment_tibble(original)
    return(as_tibble(cbind(original, ret)))
  } else if (inherits(na_action, "omit")) {
    # if the option is "omit", drop those rows from the data
    original <- as_augment_tibble(original)
    original <- original[-na_action, ]
    return(as_tibble(cbind(original, ret)))
  }

  # add .rownames column to merge the results with the original; resilent to NAs
  ret$.rownames <- rownames(ret)
  original$.rownames <- rownames(original)
  ret <- merge(original, ret, by = ".rownames")

  # reorder to line up with original
  ret <- ret[order(match(ret$.rownames, rownames(original))), ]

  rownames(ret) <- NULL
  # if rownames are just the original 1...n, they can be removed
  if (all(ret$.rownames == seq_along(ret$.rownames))) {
    ret$.rownames <- NULL
  }

  as_tibble(ret)
}

response <- function(object, newdata = NULL, has_response) {
  if (!has_response) {
    return(NULL)
  }

  res <-
    tryCatch(
      model.response(model.frame(terms(object), data = newdata, na.action = na.pass)),
      error = function(e) NULL
    )

  if (is.null(res)) {
    res <- model.response(model.frame(object))
  }

  res
}

data_error <- function(cnd, call = caller_env()) {
  cli::cli_abort(
    "Must specify either {.arg data} or {.arg newdata} argument.",
    call = call
  )
}

safe_response <- purrr::possibly(response, NULL)


# in weighted regressions, influence measures should be zero for
# data points with zero weight
# helper for augment.lm and augment.glm
add_hat_sigma_cols <- function(df, x, infl) {
  df$.hat <- 0
  df$.sigma <- 0
  df$.cooksd <- 0
  df$.std.resid <- NA

  w <- x$weights
  nonzero_idx <- if (is.null(w)) seq_along(df$.hat) else which(w != 0)

  df$.hat[nonzero_idx] <- infl$hat %>% unname()
  df$.sigma[nonzero_idx] <- infl$sigma %>% unname()
  df$.std.resid[nonzero_idx] <- rstandard(x, infl = infl) %>% unname()
  df$.cooksd[nonzero_idx] <- cooks.distance(x, infl = infl) %>% unname()
  df
}


# adds only the information that can be defined for newdata. no influence
# measure of anything fun like goes here.
#
# add .fitted column
# add .resid column if response is present
# deal with rownames and convert to tibble as necessary
# add .se.fit column if present
# be *incredibly* careful that the ... are passed correctly
augment_newdata <- function(x, data, newdata, .se_fit, interval = NULL, ...) {
  passed_newdata <- !is.null(newdata)
  df <- if (passed_newdata) newdata else data
  df <- as_augment_tibble(df)
  # interval <- match.arg(interval)
  # check if response variable is in newdata, if relevant:
  if (!is.null(x$terms) & inherits(x$terms, "formula")) {
    has_response <-
      # TRUE if response includes a function call and is in column names,
      # usually with no `data` or `newdata` supplied,
      # and `data` defaults to `model_frame(x)`
      rlang::as_label(rlang::f_lhs(x$terms)) %in% names(df) ||
        # TRUE if the response variable itself is in column names
        all.vars(x$terms)[1] %in% names(df)
  } else {
    has_response <- FALSE
  }

  # NOTE: It is important use predict(x, newdata = newdata) rather than
  # predict(x, newdata = df). This is to avoid an edge case breakage
  # when augment is called with no data argument, so that data is
  # model.frame(x). When data = model.frame(x) and the model formula
  # contains a term like `log(x)`, the predict method will break. Luckily,
  # predict(x, newdata = NULL) works perfectly well in this case.
  #
  # The current code relies on predict(x, newdata = NULL) functioning
  # equivalently to predict(x, newdata = data). An alternative would be to use
  # fitted(x) instead, although this may not play well with missing data,
  # and may behave like na.action = na.omit rather than na.action = na.pass.

  # This helper *should not* be used for predict methods that do not have
  # an na.pass argument

  if (.se_fit) {
    pred_obj <- predict(x, newdata = newdata, na.action = na.pass, se.fit = .se_fit, interval = interval, ...)
    if (is.null(interval) || interval == "none") {
      df$.fitted <- pred_obj$fit %>% unname()
    } else {
      df$.fitted <- pred_obj$fit[, "fit"]
      df$.lower <- pred_obj$fit[, "lwr"]
      df$.upper <- pred_obj$fit[, "upr"]
    }

    # a couple possible names for the standard error element of the list
    # se.fit: lm, glm
    # se: loess
    se_idx <- which(names(pred_obj) %in% c("se.fit", "se"))
    df$.se.fit <- pred_obj[[se_idx]]
  } else if (!is.null(interval) && interval != "none") {
    pred_obj <- predict(x, newdata = newdata, na.action = na.pass, se.fit = FALSE, interval = interval, ...)
    df$.fitted <- pred_obj[, "fit"]
    df$.lower <- pred_obj[, "lwr"]
    df$.upper <- pred_obj[, "upr"]
  } else if (passed_newdata) {
    if (is.null(interval) || interval == "none") {
      df$.fitted <- predict(x, newdata = newdata, na.action = na.pass, ...) %>%
        unname()
    } else {
      pred_obj <- predict(x, newdata = newdata, na.action = na.pass, interval = interval, ...)
      df$.fitted <- pred_obj$fit[, "fit"]
      df$.lower <- pred_obj$fit[, "lwr"]
      df$.upper <- pred_obj$fit[, "upr"]
    }
  } else {
    if (is.null(interval) || interval == "none") {
      df$.fitted <- predict(x, na.action = na.pass, ...) %>%
        unname()
    } else {
      pred_obj <- predict(x, newdata = newdata, na.action = na.pass, interval = interval, ...)
      df$.fitted <- pred_obj$fit[, "fit"]
      df$.lower <- pred_obj$fit[, "lwr"]
      df$.upper <- pred_obj$fit[, "upr"]
    }
  }

  resp <- safe_response(x, df, has_response)

  if (!is.null(resp) && is.numeric(resp)) {
    df$.resid <- (resp - df$.fitted) %>% unname()
  }

  df
}

# this exists to avoid the single predictor gotcha
# this version adds a terms column
broom_confint <- function(x, ...) {
  # warn on arguments silently being ignored
  rlang::check_dots_used()
  ci <- suppressMessages(confint(x, ...))

  # confint called on models with a single predictor
  # often returns a named vector rather than a matrix :(

  if (is.null(dim(ci))) {
    ci <- matrix(ci, nrow = 1)
  }

  ci <- as_tibble(ci)
  names(ci) <- c("term", "conf.low", "conf.high")
  ci
}

# this version adds a terms column
broom_confint_terms <- function(x, ...) {
  # warn on arguments silently being ignored
  rlang::check_dots_used()
  ci <- suppressMessages(confint(x, ...))

  # confint called on models with a single predictor
  # often returns a named vector rather than a matrix :(

  if (is.null(dim(ci))) {
    ci <- matrix(ci, nrow = 1)
    rownames(ci) <- names(coef(x))[1]
  }

  ci <- as_tibble(ci, rownames = "term", .name_repair = "minimal")
  names(ci) <- c("term", "conf.low", "conf.high")
  ci
}

# warn when models subclasses glm/lm and do not have their own dedicated tidiers.
warn_on_subclass <- function(x, tidier) {
  if (length(class(x)) > 1 && class(x)[1] != "glm") {
    subclass <- class(x)[1]
    dispatched_method <- class(x)[class(x) %in% c("glm", "lm")][1]

    rlang::warn(
      paste0(
        "The `", tidier, "()` method for objects of class `",
        subclass,
        "` is not maintained by the broom team, and is only supported through ",
        "the `",
        dispatched_method,
        "` tidier method. Please be cautious in interpreting and reporting ",
        "broom output.\n"
      ),
      .frequency = "once",
      .frequency_id = subclass
    )
  }
}

#' @importFrom utils globalVariables
globalVariables(
  c(
    ":=",
    ".",
    ".fitted",
    ".id",
    ".resid",
    ".rownames",
    ".tau",
    "aic",
    "alternative",
    "AME",
    "bic",
    "chosen",
    "ci.lower",
    "ci.upper",
    "column",
    "column1",
    "column2",
    "comp",
    "compareVersion",
    "comparison",
    "conf.high",
    "conf.low",
    "contrast",
    "cook.d",
    "cov.r",
    "cutoffs",
    "data",
    "delete.response",
    "dffits",
    "dfbetas",
    "df.residual",
    "distance",
    "effect",
    "est",
    "estimate",
    "expCIWidth",
    "fit",
    "GCV",
    "group",
    "group1",
    "group2",
    "hat",
    "idx",
    "index",
    "Intercept",
    "item1",
    "item2",
    "key",
    "lavInspect",
    "lambda",
    "level",
    "linpred",
    "lhs",
    "lm",
    "loading",
    "lower",
    "method",
    "Method",
    "N",
    "nobs",
    "norig",
    "null.value",
    "objs",
    "obs",
    "op",
    "p",
    "p.value",
    "packageVersion",
    "PC",
    "percent",
    "P-perm (1-tailed)",
    "Pr(Chi)",
    "probabilities",
    "pvalue",
    "QE.del",
    "rd_roclet",
    "rhs",
    "rmsea.ci.upper",
    "rowname",
    "rstudent",
    "se",
    "SE",
    "series",
    "Slope",
    "stat",
    "statistic",
    "std.dev",
    "std.error",
    "step",
    "stratum",
    "surv",
    "tau2.del",
    "term",
    "type",
    "upper",
    "value",
    "Var1",
    "Var2",
    "variable",
    "wald.test",
    "weight",
    "where",
    "y",
    "z"
  )
)

# a gentler version of dots checking that, given a dots entry to
# look for, will warn if that entry is in the dots.
# in broom, this is used for exponentiate (in tidy) and newdata (in augment).
check_ellipses <- function(arg, fn, cls, ...) {
  dots <- rlang::enquos(...)

  if (arg %in% names(dots)) {
    rlang::warn(paste0(
      "The `", arg, "` argument is not supported in the `", fn,
      "()` method for `", cls, "` objects and will be ignored."
    ))
  }

  invisible(NULL)
}
tidyverse/broom documentation built on Nov. 9, 2024, 4:24 a.m.