#' @title Make The Count Indicators
#' @description Make the ACS Inidcators related to a _count_ of a population.
#' An example of the type of indicator included in this object might be
#' the count of renter households, while the median rent price would _not_ be included.
#' @param acs_variables desc
#' @param hud_chas_variables desc
#' @param parcel_value_variables desc
#' @param parcel_sales_variables desc
#' @param indicators_cnt_pct_acs_chas desc
#' @param indicators_cnt_pct_value desc
#' @param indicators_cnt_pct_sales desc
#' @param parcel_tract_overlay desc
#' @param county_community_tract_all_metadata desc
#' @param community_metadata desc
#' @param indicator_template desc
#' @return a `tibble`
#' @rdname indicators_cnt_pct
#' @export
make_indicators_cnt_pct <- function(indicators_cnt_pct_acs_chas,
indicators_cnt_pct_value,
indicators_cnt_pct_sales,
indicator_template){
# JOIN DATA ---------------------------------------------------------------
all_cnt_vars <- list(indicators_cnt_pct_acs_chas,
indicators_cnt_pct_value,
indicators_cnt_pct_sales) %>%
purrr::map_dfr(c)
# CALCULATE COUNT AND PERCENT ---------------------------------------------
indicator_values <- all_cnt_vars %>%
dplyr::mutate(VARIABLE_ROLE = toupper(VARIABLE_ROLE)) %>%
dplyr::group_by_at(dplyr::vars(-VARIABLE_SUBTOTAL, -VARIABLE_SUBTOTAL_DESC, -ESTIMATE, -MOE)) %>%
dplyr::summarise(ESTIMATE = sum(ESTIMATE, na.rm = TRUE),
MOE = tidycensus::moe_sum(moe = MOE, estimate = ESTIMATE, na.rm = TRUE)) %>%
dplyr::ungroup() %>%
dplyr::filter(!VARIABLE_ROLE %in% "OMIT") %>%
dplyr::filter(!is.na(GEOGRAPHY_ID)) %>% # there are missing GEOIDS in the assessor data
tidyr::gather(TYPE, VALUE, ESTIMATE, MOE) %>%
tidyr::unite(PROP_TYPE, VARIABLE_ROLE, TYPE) %>%
tidyr::spread(PROP_TYPE, VALUE) %>%
dplyr::group_by_at(dplyr::vars(-COUNT_ESTIMATE,-COUNT_MOE,-TOTAL_ESTIMATE,-TOTAL_MOE)) %>%
dplyr::summarise(COUNT_ESTIMATE,
COUNT_MOE,
TOTAL_ESTIMATE ,
TOTAL_MOE,
PERCENT_ESTIMATE = dplyr::case_when(
COUNT_ESTIMATE <= 0 ~ 0,
TOTAL_ESTIMATE <= 0 ~ NA_real_,
COUNT_ESTIMATE/TOTAL_ESTIMATE > 1 ~ 1,
TRUE ~ COUNT_ESTIMATE/TOTAL_ESTIMATE
),
PERCENT_MOE = tidycensus::moe_prop(
num = COUNT_ESTIMATE,
denom = TOTAL_ESTIMATE,
moe_num = COUNT_MOE,
moe_denom = TOTAL_MOE)
) %>%
dplyr::ungroup()
# CONVERT TO LONG FORMAT --------------------------------------------------
indicator_values_long <- indicator_values %>%
tidyr::gather(MEASURE_TYPE, VALUE, dplyr::matches("ESTIMATE|MOE")) %>%
tidyr::separate(MEASURE_TYPE, into = c("MEASURE_TYPE","EST_OR_MOE"), sep = "_") %>%
tidyr::spread(EST_OR_MOE, VALUE)
skim_inds_long <- function(){
indicator_values_long %>% dplyr::group_by(GEOGRAPHY_TYPE, MEASURE_TYPE, VARIABLE_DESC) %>% dplyr::select(ESTIMATE) %>% skimr::skim()
}
# REDEFINE VARIABLE DESC COLUMN ------------------------------------------------
# create unique, human-readable variable names
indicator_variable_desc <- indicator_values_long %>%
dplyr::mutate(VARIABLE_DESC = stringr::str_c(MEASURE_TYPE, VARIABLE_DESC, sep = "_")
)
# REFORMAT ----------------------------------------------------------------
# Note: this just makes sure that the columns have the same order as the indicator_template
indicator_values_ready <- indicator_template %>%
dplyr::full_join(indicator_variable_desc,
by = c("SOURCE",
"GEOGRAPHY_ID",
"GEOGRAPHY_ID_TYPE",
"GEOGRAPHY_NAME",
"GEOGRAPHY_TYPE",
"DATE_GROUP_ID",
"DATE_BEGIN",
"DATE_END",
"DATE_RANGE",
"DATE_RANGE_TYPE",
"INDICATOR",
"VARIABLE",
"VARIABLE_DESC",
"MEASURE_TYPE",
"ESTIMATE",
"MOE"))
indicators_cnt_pct <- indicator_values_ready
return(indicators_cnt_pct)
}
show_hist_facet_indicators_cnt_pct_year <- function(){
if(!exists("indicators_cnt_pct")){stop("'indicators_cnt_pct' doesn't exist\nTry loading it with 'loadd(indicators_cnt_pct)'.")}
dat_no_outliers <- indicators_cnt_pct %>%
dplyr::mutate(ESTIMATE = dplyr::case_when(
INDICATOR %in% "SALE_RATE" & ESTIMATE > 0.4 ~ NA_real_, # remove upper outliers
TRUE ~ ESTIMATE
))
dat_no_outliers %>%
dplyr::filter(MEASURE_TYPE %in% "PERCENT") %>%
dplyr::filter(DATE_RANGE_TYPE %in% c("five years","three years","one year")) %>%
dplyr::mutate(LABEL = stringr::str_replace(VARIABLE_DESC,"PERCENT","%")) %>%
dplyr::group_by(DATE_GROUP_ID, LABEL) %>%
dplyr::mutate(MEDIAN = median(ESTIMATE,na.rm = TRUE)) %>%
dplyr::ungroup() %>%
ggplot2::ggplot(ggplot2::aes(x = ESTIMATE)) +
ggplot2::scale_x_continuous(labels = scales::percent) +
ggplot2::geom_histogram() +
ggplot2::geom_vline(ggplot2::aes(xintercept=MEDIAN), size=0.5, color = "red") +
ggplot2::facet_grid(DATE_GROUP_ID ~ LABEL, scales = "free_x")
}
show_hist_facet_indicators_cnt_pct_qtr <- function(){
if(!exists("indicators_cnt_pct")){stop("'indicators_cnt_pct' doesn't exist\nTry loading it with 'loadd(indicators_cnt_pct)'.")}
ind_cnt_pct_no_outliers <- indicators_cnt_pct %>%
dplyr::filter(ESTIMATE <= .15)
ind_cnt_pct_no_outliers %>%
dplyr::filter(MEASURE_TYPE %in% "PERCENT") %>%
dplyr::filter(DATE_RANGE_TYPE %in% c("one quarter")) %>%
dplyr::mutate(LABEL = VARIABLE_DESC) %>%
dplyr::group_by(DATE_GROUP_ID, LABEL) %>%
dplyr::mutate(MEDIAN = median(ESTIMATE,na.rm = TRUE)) %>%
dplyr::ungroup() %>%
ggplot2::ggplot(ggplot2::aes(x = ESTIMATE)) +
ggplot2::scale_x_continuous(labels = scales::percent) +
ggplot2::geom_histogram() +
ggplot2::geom_vline(ggplot2::aes(xintercept=MEDIAN), size=0.5, color = "red") +
ggplot2::facet_grid(DATE_GROUP_ID ~ LABEL, scales = "free_x")
}
#' @rdname indicators_cnt_pct
#' @export
make_indicators_cnt_pct_acs_chas <- function(acs_variables,
hud_chas_variables,
county_community_tract_all_metadata,
community_metadata){
# PREPARE DATA: ACS --------------------------------------------------------
acs_cnt <- acs_variables %>%
dplyr::filter(MEASURE_TYPE %in% "COUNT")
acs_community_cnt <- acs_cnt %>%
dplyr::left_join(community_metadata, by = "GEOGRAPHY_ID") %>%
dplyr::mutate(GEOGRAPHY_ID = GEOGRAPHY_COMMUNITY_ID,
GEOGRAPHY_ID_TYPE = GEOGRAPHY_COMMUNITY_ID_TYPE,
GEOGRAPHY_NAME = GEOGRAPHY_COMMUNITY_NAME,
GEOGRAPHY_TYPE = GEOGRAPHY_COMMUNITY_TYPE) %>%
dplyr::group_by(SOURCE,
GEOGRAPHY_ID,
GEOGRAPHY_ID_TYPE,
GEOGRAPHY_TYPE,
GEOGRAPHY_NAME,
VARIABLE,
VARIABLE_DESC,
VARIABLE_ROLE,
INDICATOR,
DATE_BEGIN,
DATE_END,
DATE_GROUP_ID,
DATE_RANGE,
DATE_RANGE_TYPE) %>%
dplyr::summarise(ESTIMATE = sum(ESTIMATE, na.rm = TRUE),
MOE = tidycensus::moe_sum(moe = MOE, estimate = ESTIMATE, na.rm = TRUE)) %>%
dplyr::ungroup()
# PREPARE DATA: CHAS --------------------------------------------------------
chas_cnt <- hud_chas_variables %>%
dplyr::filter(MEASURE_TYPE %in% "COUNT") # unnecessary step because they are all COUNT but I'm leaving it for clarity's sake
chas_community_cnt <- chas_cnt %>%
dplyr::left_join(community_metadata, by = "GEOGRAPHY_ID") %>%
dplyr::mutate(GEOGRAPHY_ID = GEOGRAPHY_COMMUNITY_ID,
GEOGRAPHY_ID_TYPE = GEOGRAPHY_COMMUNITY_ID_TYPE,
GEOGRAPHY_NAME = GEOGRAPHY_COMMUNITY_NAME,
GEOGRAPHY_TYPE = GEOGRAPHY_COMMUNITY_TYPE) %>%
dplyr::group_by(SOURCE,
GEOGRAPHY_ID,
GEOGRAPHY_ID_TYPE,
GEOGRAPHY_TYPE,
GEOGRAPHY_NAME,
VARIABLE,
VARIABLE_DESC,
VARIABLE_ROLE,
INDICATOR,
DATE_BEGIN,
DATE_END,
DATE_GROUP_ID,
DATE_RANGE,
DATE_RANGE_TYPE) %>%
dplyr::summarise(ESTIMATE = sum(ESTIMATE, na.rm = TRUE),
MOE = tidycensus::moe_sum(moe = MOE, estimate = ESTIMATE, na.rm = TRUE)) %>%
dplyr::ungroup()
# JOIN --------------------------------------------------------------------
indicators_cnt_pct_acs_chas_ready <- list(acs_cnt,
acs_community_cnt,
chas_cnt,
chas_community_cnt) %>%
purrr::map_dfr(c)
# REFORMAT ----------------------------------------------------------------
# note: there is no need to reformat this object - that will happen in make_indicators_cnt_pct()
# RETURN ------------------------------------------------------------------
indicators_cnt_pct_acs_chas <- indicators_cnt_pct_acs_chas_ready
return(indicators_cnt_pct_acs_chas)
}
#' @rdname indicators_cnt_pct
#' @export
make_indicators_cnt_pct_value <- function(parcel_value_variables,
parcel_tract_overlay,
county_community_tract_all_metadata,
community_metadata){
# PREPARE DATA: ASSESSED VALUES --------------------------------------------------
# Note: there is an issue with the condo record PINs.
# In order to successfully join the parcels to census tracts,
# the 2005 condo PINs need to be converted from their condo unit PIN
# to the condo complex PIN. This is done by replacing the last four
# digits of the unit PIN with "0000".
convert_to_complex_pin <- function(x){stringr::str_replace(x,".{4}$","0000")}
parcel_value_cnt <- parcel_value_variables %>%
dplyr::mutate(GEOGRAPHY_ID_JOIN = dplyr::case_when(
META_PROPERTY_CATEGORY %in% "condo" ~ convert_to_complex_pin(GEOGRAPHY_ID),
TRUE ~ GEOGRAPHY_ID
)) %>%
dplyr::left_join(parcel_tract_overlay, by = c(GEOGRAPHY_ID_JOIN = "PIN")) %>%
dplyr::select(-GEOGRAPHY_ID_JOIN) %>%
dplyr::mutate(SOURCE = "ASSESSOR",
GEOGRAPHY_ID = GEOID,
VARIABLE = stringr::str_c("SR_",stringr::str_extract(VARIABLE,"ALL|SF|CONDO")),
VARIABLE_DESC = stringr::str_c("SALE_RATE_",stringr::str_extract(VARIABLE,"ALL|SF|CONDO")),
INDICATOR = "SALE_RATE",
MOE = 0L,
ESTIMATE = dplyr::if_else(VARIABLE_ROLE %in% c("include"),1L,0L),
MEASURE_TYPE = "COUNT") %>%
dplyr::select(-GEOID,-GEOGRAPHY_ID_TYPE,-GEOGRAPHY_NAME,-GEOGRAPHY_TYPE, -dplyr::matches("^META")) %>%
dplyr::left_join(county_community_tract_all_metadata, by = "GEOGRAPHY_ID")
parcel_value_community_cnt <- parcel_value_cnt %>%
dplyr::left_join(community_metadata, by = "GEOGRAPHY_ID") %>%
dplyr::mutate(GEOGRAPHY_ID = GEOGRAPHY_COMMUNITY_ID,
GEOGRAPHY_ID_TYPE = GEOGRAPHY_COMMUNITY_ID_TYPE,
GEOGRAPHY_NAME = GEOGRAPHY_COMMUNITY_NAME,
GEOGRAPHY_TYPE = GEOGRAPHY_COMMUNITY_TYPE)
parcel_value_county_cnt <- parcel_value_cnt %>%
dplyr::mutate(GEOGRAPHY_ID = "53033") %>%
dplyr::select(-GEOGRAPHY_ID_TYPE,-GEOGRAPHY_NAME,-GEOGRAPHY_TYPE) %>%
dplyr::left_join(county_community_tract_all_metadata, by = "GEOGRAPHY_ID")
# SUMMARIZE BY 3-YEAR SPAN ------------------------------------------------
three_year_fields <- tibble::tribble(
~DATE_GROUP_ID, ~DATE_BEGIN, ~DATE_END, ~DATE_RANGE, ~DATE_RANGE_TYPE,
"2013_2015", "2013-01-01", "2015-12-31", "20130101_20151231", "three years",
"2016_2018", "2016-01-01", "2018-12-31", "20160101_20181231", "three years"
)
is_between_dates <- function(x, begin, end){
dplyr::between(lubridate::ymd(x), lubridate::ymd(begin), lubridate::ymd(end))
}
summarize_by_3year <- function(x, variable_role){
p_3year_only <- x %>%
dplyr::mutate(DATE_GROUP_ID = dplyr::case_when(
is_between_dates(DATE_BEGIN, "2013-01-01", "2015-12-31") ~ "2013_2015",
is_between_dates(DATE_BEGIN, "2016-01-01", "2018-12-31") ~ "2016_2018",
TRUE ~ NA_character_
)) %>%
dplyr::filter(! is.na(DATE_GROUP_ID)) %>% # drop sales outside of the two 3-year spans
dplyr::select(-DATE_BEGIN, -DATE_END, -DATE_RANGE, -DATE_RANGE_TYPE) %>% # drop the original date fields
dplyr::left_join(three_year_fields, by = "DATE_GROUP_ID") # add the new replacement 3-year span date fields
p_summary_by_3year <- p_3year_only %>%
dplyr::group_by(SOURCE,
GEOGRAPHY_ID,
GEOGRAPHY_ID_TYPE,
VARIABLE,
VARIABLE_DESC,
INDICATOR,
DATE_BEGIN,
DATE_END,
DATE_GROUP_ID,
DATE_RANGE,
DATE_RANGE_TYPE) %>%
dplyr::summarise(ESTIMATE = sum(ESTIMATE, na.rm = TRUE),
MOE = tidycensus::moe_sum(moe = MOE, estimate = ESTIMATE, na.rm = TRUE)) %>%
dplyr::ungroup() %>%
dplyr::mutate(VARIABLE_ROLE = variable_role) %>%
dplyr::select(-GEOGRAPHY_ID_TYPE) %>%
dplyr::left_join(county_community_tract_all_metadata, by = "GEOGRAPHY_ID")
}
parcel_value_cnt_3year <- summarize_by_3year(parcel_value_cnt,
variable_role = "TOTAL")
parcel_value_community_cnt_3year <- summarize_by_3year(parcel_value_community_cnt,
variable_role = "TOTAL")
parcel_value_county_cnt_3year <- summarize_by_3year(parcel_value_county_cnt,
variable_role = "TOTAL")
# SUMMARIZE BY YEAR --------------------------------------------
summarize_by_year <- function(x, variable_role){
x %>%
dplyr::mutate(DATE_BEGIN = lubridate::floor_date(lubridate::date(DATE_BEGIN), unit = "year"),
DATE_END = lubridate::ceiling_date(lubridate::date(DATE_BEGIN), unit = "year") - 1,
DATE_GROUP_ID = DATE_GROUP_ID,
DATE_RANGE = create_range_date(DATE_BEGIN, DATE_END),
DATE_RANGE_TYPE = "one year") %>%
dplyr::mutate_if(lubridate::is.Date,as.character) %>%
dplyr::group_by(SOURCE,
GEOGRAPHY_ID,
GEOGRAPHY_ID_TYPE,
VARIABLE,
VARIABLE_DESC,
INDICATOR,
DATE_BEGIN,
DATE_END,
DATE_GROUP_ID,
DATE_RANGE,
DATE_RANGE_TYPE) %>%
dplyr::summarise(ESTIMATE = sum(ESTIMATE, na.rm = TRUE),
MOE = tidycensus::moe_sum(moe = MOE, estimate = ESTIMATE, na.rm = TRUE)) %>%
dplyr::ungroup() %>%
dplyr::mutate(VARIABLE_ROLE = variable_role) %>%
dplyr::select(-GEOGRAPHY_ID_TYPE) %>%
dplyr::left_join(county_community_tract_all_metadata, by = "GEOGRAPHY_ID")
}
parcel_value_cnt_year <- summarize_by_year(parcel_value_cnt,
variable_role = "TOTAL")
parcel_value_community_cnt_year <- summarize_by_year(parcel_value_community_cnt,
variable_role = "TOTAL")
parcel_value_county_cnt_year <- summarize_by_year(parcel_value_county_cnt,
variable_role = "TOTAL")
# SUMMARIZE BY QUARTER ----------------------------------------------------
get_qtr_sequence <- function(date_x, date_y){
seq(from = lubridate::floor_date(lubridate::ymd(date_x), unit = "year"),
to = lubridate::ceiling_date(lubridate::ymd(date_y), unit = "year")-1,
by = "quarter")
}
date_cols_qtr_full <- parcel_value_cnt %>%
dplyr::select(DATE_BEGIN, DATE_END) %>%
dplyr::distinct() %>%
dplyr::transmute(QTR_DATE = purrr::map2(DATE_BEGIN, DATE_END,get_qtr_sequence)) %>%
tidyr::unnest() %>%
dplyr::transmute(DATE_BEGIN = lubridate::floor_date(lubridate::date(QTR_DATE), unit = "quarter"),
DATE_END = lubridate::ceiling_date(lubridate::date(QTR_DATE), unit = "quarter") - 1,
DATE_GROUP_ID = create_range_quarter(DATE_BEGIN, DATE_END),
DATE_RANGE = create_range_date(DATE_BEGIN, DATE_END),
DATE_RANGE_TYPE = "one quarter") %>%
dplyr::mutate_if(lubridate::is.Date, as.character)
summarize_by_quarter <- function(x, variable_role){
summary_by_qtr_Q4_only <- x %>%
dplyr::mutate(DATE_BEGIN = lubridate::floor_date(lubridate::date(DATE_BEGIN), unit = "quarter"),
DATE_END = lubridate::ceiling_date(lubridate::date(DATE_BEGIN), unit = "quarter") - 1,
DATE_GROUP_ID = create_range_quarter(DATE_BEGIN, DATE_END),
DATE_RANGE = create_range_date(DATE_BEGIN, DATE_END),
DATE_RANGE_TYPE = "one quarter") %>%
dplyr::mutate_if(lubridate::is.Date,as.character) %>%
dplyr::group_by(SOURCE,
GEOGRAPHY_ID,
GEOGRAPHY_ID_TYPE,
VARIABLE,
VARIABLE_DESC,
INDICATOR,
DATE_GROUP_ID) %>%
dplyr::summarise(ESTIMATE = sum(ESTIMATE, na.rm = TRUE),
MOE = tidycensus::moe_sum(moe = MOE, estimate = ESTIMATE, na.rm = TRUE)) %>%
dplyr::ungroup() %>%
dplyr::mutate(VARIABLE_ROLE = variable_role) %>%
dplyr::select(-GEOGRAPHY_ID_TYPE) %>%
dplyr::left_join(county_community_tract_all_metadata, by = "GEOGRAPHY_ID")
replace_q4 <- function(x, q){
x %>% dplyr::mutate( DATE_GROUP_ID = stringr::str_replace_all(DATE_GROUP_ID, "Q4",q))
}
summary_by_qtr_all <- list("Q1", "Q2", "Q3") %>%
purrr::map_dfr(~replace_q4(summary_by_qtr_Q4_only, q = .x)) %>%
dplyr::bind_rows(summary_by_qtr_Q4_only) %>%
dplyr::left_join(date_cols_qtr_full, by = "DATE_GROUP_ID")
return(summary_by_qtr_all)
}
parcel_value_cnt_qtr <- summarize_by_quarter(parcel_value_cnt,
variable_role = "TOTAL")
parcel_value_community_cnt_qtr <- summarize_by_quarter(parcel_value_community_cnt,
variable_role = "TOTAL")
parcel_value_county_cnt_qtr <- summarize_by_quarter(parcel_value_county_cnt,
variable_role = "TOTAL")
# JOIN --------------------------------------------------------------------
indicators_cnt_pct_value_ready <- list(parcel_value_cnt_3year,
parcel_value_community_cnt_3year,
parcel_value_county_cnt_3year,
parcel_value_cnt_year,
parcel_value_community_cnt_year,
parcel_value_county_cnt_year,
parcel_value_cnt_qtr,
parcel_value_community_cnt_qtr,
parcel_value_county_cnt_qtr) %>%
purrr::map_dfr(c)
# REFORMAT ----------------------------------------------------------------
# note: there is no need to reformat this object - that will happen in make_indicators_cnt_pct()
# RETURN ------------------------------------------------------------------
indicators_cnt_pct_value <- indicators_cnt_pct_value_ready
return(indicators_cnt_pct_value)
}
#' @rdname indicators_cnt_pct
#' @export
make_indicators_cnt_pct_sales <- function(parcel_sales_variables,
parcel_tract_overlay,
county_community_tract_all_metadata,
community_metadata){
# PREPARE DATA: SALES --------------------------------------------------
# Note: there is an issue with the condo record PINs.
# In order to successfully join the parcels to census tracts,
# the 2005 condo PINs need to be converted from their condo unit PIN
# to the condo complex PIN. This is done by replacing the last four
# digits of the unit PIN with "0000".
convert_to_complex_pin <- function(x){stringr::str_replace(x,".{4}$","0000")}
parcel_sales_cnt <- parcel_sales_variables %>%
dplyr::mutate(GEOGRAPHY_ID_JOIN = dplyr::case_when(
META_PROPERTY_CATEGORY %in% "condo" ~ convert_to_complex_pin(GEOGRAPHY_ID),
TRUE ~ GEOGRAPHY_ID
)) %>%
dplyr::left_join(parcel_tract_overlay, by = c(GEOGRAPHY_ID_JOIN = "PIN")) %>%
dplyr::select(-GEOGRAPHY_ID_JOIN) %>%
dplyr::mutate(SOURCE = "ASSESSOR",
GEOGRAPHY_ID = GEOID,
VARIABLE = stringr::str_c("SR_",stringr::str_extract(VARIABLE,"ALL|SF|CONDO")),
VARIABLE_DESC = stringr::str_c("SALE_RATE_",stringr::str_extract(VARIABLE,"ALL|SF|CONDO")),
INDICATOR = "SALE_RATE",
MOE = 0L,
ESTIMATE = dplyr::if_else(VARIABLE_ROLE %in% c("include"),1L,0L),
MEASURE_TYPE = "COUNT") %>%
dplyr::select(-GEOID,-GEOGRAPHY_ID_TYPE,-GEOGRAPHY_NAME,-GEOGRAPHY_TYPE, -dplyr::matches("^META")) %>%
dplyr::left_join(county_community_tract_all_metadata, by = "GEOGRAPHY_ID")
parcel_sales_community_cnt <- parcel_sales_cnt %>%
dplyr::left_join(community_metadata, by = "GEOGRAPHY_ID") %>%
dplyr::mutate(GEOGRAPHY_ID = GEOGRAPHY_COMMUNITY_ID,
GEOGRAPHY_ID_TYPE = GEOGRAPHY_COMMUNITY_ID_TYPE,
GEOGRAPHY_NAME = GEOGRAPHY_COMMUNITY_NAME,
GEOGRAPHY_TYPE = GEOGRAPHY_COMMUNITY_TYPE)
parcel_sales_county_cnt <- parcel_sales_cnt %>%
dplyr::mutate(GEOGRAPHY_ID = "53033") %>%
dplyr::select(-GEOGRAPHY_ID_TYPE,-GEOGRAPHY_NAME,-GEOGRAPHY_TYPE) %>%
dplyr::left_join(county_community_tract_all_metadata, by = "GEOGRAPHY_ID")
# SUMMARIZE BY 3-YEAR SPAN ------------------------------------------------
three_year_fields <- tibble::tribble(
~DATE_GROUP_ID, ~DATE_BEGIN, ~DATE_END, ~DATE_RANGE, ~DATE_RANGE_TYPE,
"2013_2015", "2013-01-01", "2015-12-31", "20130101_20151231", "three years",
"2016_2018", "2016-01-01", "2018-12-31", "20160101_20181231", "three years"
)
is_between_dates <- function(x, begin, end){
dplyr::between(lubridate::ymd(x), lubridate::ymd(begin), lubridate::ymd(end))
}
summarize_by_3year <- function(x, variable_role){
p_3year_only <- x %>%
dplyr::mutate(DATE_GROUP_ID = dplyr::case_when(
is_between_dates(DATE_BEGIN, "2013-01-01", "2015-12-31") ~ "2013_2015",
is_between_dates(DATE_BEGIN, "2016-01-01", "2018-12-31") ~ "2016_2018",
TRUE ~ NA_character_
)) %>%
dplyr::filter(! is.na(DATE_GROUP_ID)) %>% # drop sales outside of the two 3-year spans
dplyr::select(-DATE_BEGIN, -DATE_END, -DATE_RANGE, -DATE_RANGE_TYPE) %>% # drop the original date fields
dplyr::left_join(three_year_fields, by = "DATE_GROUP_ID") # add the new replacement 3-year span date fields
p_summary_by_3year <- p_3year_only %>%
dplyr::group_by(SOURCE,
GEOGRAPHY_ID,
GEOGRAPHY_ID_TYPE,
VARIABLE,
VARIABLE_DESC,
INDICATOR,
DATE_BEGIN,
DATE_END,
DATE_GROUP_ID,
DATE_RANGE,
DATE_RANGE_TYPE) %>%
dplyr::summarise(ESTIMATE = sum(ESTIMATE, na.rm = TRUE),
MOE = tidycensus::moe_sum(moe = MOE, estimate = ESTIMATE, na.rm = TRUE)) %>%
dplyr::ungroup() %>%
dplyr::mutate(VARIABLE_ROLE = variable_role) %>%
dplyr::select(-GEOGRAPHY_ID_TYPE) %>%
dplyr::left_join(county_community_tract_all_metadata, by = "GEOGRAPHY_ID")
return(p_summary_by_3year)
}
parcel_sales_cnt_3year <- summarize_by_3year(parcel_sales_cnt,
variable_role = "COUNT")
parcel_sales_community_cnt_3year <- summarize_by_3year(parcel_sales_community_cnt,
variable_role = "COUNT")
parcel_sales_county_cnt_3year <- summarize_by_3year(parcel_sales_county_cnt,
variable_role = "COUNT")
# SUMMARIZE BY YEAR --------------------------------------------
summarize_by_year <- function(x, variable_role){
x %>%
dplyr::mutate(DATE_BEGIN = lubridate::floor_date(lubridate::date(DATE_BEGIN), unit = "year"),
DATE_END = lubridate::ceiling_date(lubridate::date(DATE_BEGIN), unit = "year") - 1,
DATE_GROUP_ID = DATE_GROUP_ID,
DATE_RANGE = create_range_date(DATE_BEGIN, DATE_END),
DATE_RANGE_TYPE = "one year") %>%
dplyr::mutate_if(lubridate::is.Date,as.character) %>%
dplyr::group_by(SOURCE,
GEOGRAPHY_ID,
GEOGRAPHY_ID_TYPE,
VARIABLE,
VARIABLE_DESC,
INDICATOR,
DATE_BEGIN,
DATE_END,
DATE_GROUP_ID,
DATE_RANGE,
DATE_RANGE_TYPE) %>%
dplyr::summarise(ESTIMATE = sum(ESTIMATE, na.rm = TRUE),
MOE = tidycensus::moe_sum(moe = MOE, estimate = ESTIMATE, na.rm = TRUE)) %>%
dplyr::ungroup() %>%
dplyr::mutate(VARIABLE_ROLE = variable_role) %>%
dplyr::select(-GEOGRAPHY_ID_TYPE) %>%
dplyr::left_join(county_community_tract_all_metadata, by = "GEOGRAPHY_ID")
}
parcel_sales_cnt_year <- summarize_by_year(parcel_sales_cnt,
variable_role = "COUNT")
parcel_sales_community_cnt_year <- summarize_by_year(parcel_sales_community_cnt,
variable_role = "COUNT")
parcel_sales_county_cnt_year <- summarize_by_year(parcel_sales_county_cnt,
variable_role = "COUNT")
# SUMMARIZE BY QUARTER ----------------------------------------------------
get_qtr_sequence <- function(date_x, date_y){
seq(from = lubridate::floor_date(lubridate::ymd(date_x), unit = "year"),
to = lubridate::ceiling_date(lubridate::ymd(date_y), unit = "year")-1,
by = "quarter")
}
date_cols_qtr_full <- parcel_sales_cnt %>%
dplyr::select(DATE_BEGIN, DATE_END) %>%
dplyr::distinct() %>%
dplyr::transmute(QTR_DATE = purrr::map2(DATE_BEGIN, DATE_END,get_qtr_sequence)) %>%
tidyr::unnest() %>%
dplyr::transmute(DATE_BEGIN = lubridate::floor_date(lubridate::date(QTR_DATE), unit = "quarter"),
DATE_END = lubridate::ceiling_date(lubridate::date(QTR_DATE), unit = "quarter") - 1,
DATE_GROUP_ID = create_range_quarter(DATE_BEGIN, DATE_END),
DATE_RANGE = create_range_date(DATE_BEGIN, DATE_END),
DATE_RANGE_TYPE = "one quarter") %>%
dplyr::distinct() %>%
dplyr::mutate_if(lubridate::is.Date, as.character)
summarize_by_quarter <- function(x, date_cols_qtr_full, variable_role){
summary_by_qtr <- x %>%
dplyr::mutate(DATE_BEGIN = lubridate::floor_date(lubridate::date(DATE_BEGIN), unit = "quarter"),
DATE_END = lubridate::ceiling_date(lubridate::date(DATE_BEGIN), unit = "quarter") - 1,
DATE_GROUP_ID = create_range_quarter(DATE_BEGIN, DATE_END),
DATE_RANGE = create_range_date(DATE_BEGIN, DATE_END),
DATE_RANGE_TYPE = "one quarter") %>%
dplyr::mutate_if(lubridate::is.Date,as.character) %>%
dplyr::group_by(SOURCE,
GEOGRAPHY_ID,
GEOGRAPHY_ID_TYPE,
VARIABLE,
VARIABLE_DESC,
INDICATOR,
DATE_BEGIN,
DATE_END,
DATE_GROUP_ID,
DATE_RANGE,
DATE_RANGE_TYPE) %>%
dplyr::summarise(ESTIMATE = sum(ESTIMATE, na.rm = TRUE),
MOE = tidycensus::moe_sum(moe = MOE, estimate = ESTIMATE, na.rm = TRUE)) %>%
dplyr::ungroup() %>%
dplyr::mutate(VARIABLE_ROLE = variable_role) %>%
dplyr::select(-GEOGRAPHY_ID_TYPE) %>%
dplyr::left_join(county_community_tract_all_metadata, by = "GEOGRAPHY_ID")
# it is possible that not every combination of DATE_GROUP_ID and quarter will be present
# if that is the case, use dplyr::expand() to add the missing combinations
summary_by_qtr_complete <- summary_by_qtr %>% # expand the data to include all DATE_GROUP_ID values (e.g.,"2005Q2_2005Q2") in the data
tidyr::expand(tidyr::nesting(SOURCE,
GEOGRAPHY_ID,
VARIABLE,
VARIABLE_DESC,
INDICATOR,
VARIABLE_ROLE,
GEOGRAPHY_ID_TYPE,
GEOGRAPHY_NAME,
GEOGRAPHY_TYPE),
DATE_GROUP_ID) %>%
dplyr::left_join(date_cols_qtr_full, by = "DATE_GROUP_ID") %>%
dplyr::left_join(summary_by_qtr, by = c("SOURCE",
"GEOGRAPHY_ID",
"VARIABLE",
"VARIABLE_DESC",
"INDICATOR",
"VARIABLE_ROLE",
"GEOGRAPHY_ID_TYPE",
"GEOGRAPHY_NAME",
"GEOGRAPHY_TYPE",
"DATE_GROUP_ID",
"DATE_BEGIN",
"DATE_END",
"DATE_RANGE",
"DATE_RANGE_TYPE")) %>%
tidyr::replace_na(list(ESTIMATE = 0,
MOE = 0))
return(summary_by_qtr_complete)
}
parcel_sales_cnt_qtr <- summarize_by_quarter(parcel_sales_cnt,
date_cols_qtr_full,
variable_role = "COUNT")
parcel_sales_community_cnt_qtr <- summarize_by_quarter(parcel_sales_community_cnt,
date_cols_qtr_full,
variable_role = "COUNT")
parcel_sales_county_cnt_qtr <- summarize_by_quarter(parcel_sales_county_cnt,
date_cols_qtr_full,
variable_role = "COUNT")
# JOIN --------------------------------------------------------------------
indicators_cnt_pct_sales_ready <- list(parcel_sales_cnt_3year,
parcel_sales_community_cnt_3year,
parcel_sales_county_cnt_3year,
parcel_sales_cnt_year,
parcel_sales_community_cnt_year,
parcel_sales_county_cnt_year,
parcel_sales_cnt_qtr,
parcel_sales_community_cnt_qtr,
parcel_sales_county_cnt_qtr) %>%
purrr::map_dfr(c)
# REFORMAT ----------------------------------------------------------------
# note: there is no need to reformat this object - that will happen in make_indicators_cnt_pct()
# RETURN ------------------------------------------------------------------
indicators_cnt_pct_sales <- indicators_cnt_pct_sales_ready
return(indicators_cnt_pct_sales)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.