R/make-indicators-median.R

#' @title Make The Median Indicators
#' @description Make the ACS Inidcators related to a _value of a population.
#'   An example of the type of indicator included in this object might be
#'   the count of renter households, while the median rent price would _not_ be included.
#' @param acs_variables desc
#' @param ltdb_variables desc
#' @param factfinder_variables desc
#' @param parcel_value_variables desc
#' @param parcel_sales_variables desc
#' @param parcel_tract_overlay desc
#' @param county_community_tract_all_metadata desc
#' @param community_metadata desc
#' @param indicator_template desc
#' @param indicators_median_acs_ltdb_ff desc
#' @param indicators_median_value_3year desc
#' @param indicators_median_value_1year desc
#' @param indicators_median_value_quarter desc
#' @param indicators_median_sales desc
#' @return a `tibble`
#' @note These functions are modularized in order to avoid hitting memory limits; ideally, this would all be performed in a single function.

#' @rdname indicators_median
#' @export
make_indicators_median <- function(indicators_median_acs_ltdb_ff,
                                   indicators_median_value_3year,
                                   indicators_median_value_1year,
                                   indicators_median_value_quarter,
                                   indicators_median_sales,
                                   indicator_template){


  # JOIN DATA ---------------------------------------------------------------

  indicators_median_all <- list(indicators_median_acs_ltdb_ff,
                                   indicators_median_value_3year,
                                   indicators_median_value_1year,
                                   indicators_median_value_quarter,
                                   indicators_median_sales) %>%
    purrr::map_dfr(c)


  # REDEFINE VARIABLE DESC COLUMN ------------------------------------------------


  # create unique, human-readable variable names

  indicator_median_desc <- indicators_median_all %>%
    dplyr::mutate(VARIABLE_DESC = stringr::str_c(MEASURE_TYPE, VARIABLE_DESC, sep = "_")
    )



  # REFORMAT ----------------------------------------------------------------

  # Note: this just makes sure that the columns have the same order as the indicator_template

  indicators_median_ready <- indicator_template %>%
    dplyr::full_join(indicator_median_desc,
                     by = c("SOURCE",
                            "GEOGRAPHY_ID",
                            "GEOGRAPHY_ID_TYPE",
                            "GEOGRAPHY_NAME",
                            "GEOGRAPHY_TYPE",
                            "DATE_GROUP_ID",
                            "DATE_BEGIN",
                            "DATE_END",
                            "DATE_RANGE",
                            "DATE_RANGE_TYPE",
                            "INDICATOR",
                            "VARIABLE",
                            "VARIABLE_DESC",
                            "MEASURE_TYPE",
                            "ESTIMATE",
                            "MOE")) %>%
    dplyr::select(-N, -NAS) # remove these fields

  indicators_median <- indicators_median_ready

  # RETURN ------------------------------------------------------------------

  return(indicators_median)

}

check_parcel_median_year <- function(){

  smooth_outliers <- function(x, na.rm = TRUE, ...) {
    qnt <- quantile(x, probs=c(.25, .75), na.rm = na.rm, ...)
    H <- 1.3 * IQR(x, na.rm = na.rm)
    y <- x
    y[x < (qnt[1] - H)] <- round(qnt[1] - H)
    y[x > (qnt[2] + H)] <- round(qnt[2] + H)
    y
  }

  dat <- indicators_median %>%
    dplyr::filter(DATE_RANGE_TYPE %in% c("five years","three years","one year")) %>%
    dplyr::group_by(VARIABLE_DESC, DATE_GROUP_ID) %>%
    dplyr::mutate(MEDIAN = median(ESTIMATE,na.rm = TRUE),
                  ESTIMATE_NO_OUTLIERS = smooth_outliers(ESTIMATE)) %>%
    dplyr::ungroup()

  dat %>%
    ggplot2::ggplot(ggplot2::aes(x = ESTIMATE_NO_OUTLIERS)) +
    ggplot2::geom_histogram() +
    ggplot2::geom_vline(ggplot2::aes(xintercept=MEDIAN), size=0.5, color = "red") +
    ggplot2::scale_x_continuous(labels = scales::comma) +
    ggplot2::facet_grid(DATE_GROUP_ID ~ VARIABLE_DESC, scales = "free")
}

check_parcel_median_qtr <- function(){

  smooth_outliers <- function(x, na.rm = TRUE, ...) {
    qnt <- quantile(x, probs=c(.25, .75), na.rm = na.rm, ...)
    H <- 1.3 * IQR(x, na.rm = na.rm)
    y <- x
    y[x < (qnt[1] - H)] <- round(qnt[1] - H)
    y[x > (qnt[2] + H)] <- round(qnt[2] + H)
    y
  }

  dat <- indicators_median %>%
    dplyr::filter(DATE_RANGE_TYPE %in% c("one quarter")) %>%
    dplyr::group_by(VARIABLE_DESC, DATE_GROUP_ID) %>%
    dplyr::mutate(MEDIAN = median(ESTIMATE,na.rm = TRUE),
                  ESTIMATE_NO_OUTLIERS = smooth_outliers(ESTIMATE)) %>%
    dplyr::ungroup()

  dat %>%
    ggplot2::ggplot(ggplot2::aes(x = ESTIMATE_NO_OUTLIERS)) +
    ggplot2::geom_histogram() +
    ggplot2::geom_vline(ggplot2::aes(xintercept=MEDIAN), size=0.5, color = "red") +
    ggplot2::scale_x_continuous(labels = scales::comma) +
    ggplot2::facet_grid(DATE_GROUP_ID ~ VARIABLE_DESC, scales = "free")
}


#' @rdname indicators_median
#' @export
make_indicators_median_acs_ltdb_ff <- function(acs_variables,
                                               ltdb_variables,
                                               factfinder_variables,
                                               county_community_tract_all_metadata,
                                               community_metadata){

  # JOIN --------------------------------------------------------------------

  ind_median_acs_ltdb_ff <- list(acs_variables,
                                 ltdb_variables,
                                 factfinder_variables) %>%
    purrr::map_dfr(c) %>%
    dplyr::filter(MEASURE_TYPE %in% "MEDIAN") %>%
    dplyr::filter(VARIABLE_ROLE %in% "include") %>%
    dplyr::select(-dplyr::matches("VARIABLE_SUBTOTAL|VARIABLE_ROLE"))


  indicators_median_acs_ltdb_ff <- ind_median_acs_ltdb_ff

  # RETURN ------------------------------------------------------------------

  return(indicators_median_acs_ltdb_ff)

}

#' @rdname indicators_median
#' @export
make_indicators_median_value_3year <- function(parcel_value_variables,
                                               parcel_tract_overlay,
                                               county_community_tract_all_metadata,
                                               community_metadata){


  # PREPARE DATA --------------------------------------------------------

  parcel_value_median <- parcel_value_variables %>%
    dplyr::mutate(GEOGRAPHY_ID_JOIN = dplyr::case_when(
      META_PROPERTY_CATEGORY %in% "condo" ~ convert_to_complex_pin(GEOGRAPHY_ID),
      TRUE ~ GEOGRAPHY_ID
    )) %>%
    dplyr::left_join(parcel_tract_overlay, by = c(GEOGRAPHY_ID_JOIN = "PIN")) %>% # filter out parcels whose PINs don't match any tract GEOID
    dplyr::select(-GEOGRAPHY_ID_JOIN)  %>%
    dplyr::mutate(GEOGRAPHY_ID = GEOID,
                  GEOGRAPHY_ID_TYPE = "GEOID",
                  GEOGRAPHY_TYPE = "tract",
                  MEASURE_TYPE = "MEDIAN") %>%
    dplyr::select(-GEOID, -dplyr::matches("^META"))

  community_value_median <- parcel_value_median %>%
    dplyr::left_join(community_metadata, by = "GEOGRAPHY_ID") %>%
    dplyr::mutate(GEOGRAPHY_ID = GEOGRAPHY_COMMUNITY_ID,
                  GEOGRAPHY_ID_TYPE = GEOGRAPHY_COMMUNITY_ID_TYPE,
                  GEOGRAPHY_NAME = GEOGRAPHY_COMMUNITY_NAME,
                  GEOGRAPHY_TYPE = GEOGRAPHY_COMMUNITY_TYPE) %>%
    dplyr::select(-dplyr::matches("_COMMUNITY"))

  # create duplicates of the parcel variables that will be summarized
  # at the county level (instead of the tract level)

  county_value_median <- parcel_value_median %>%
    dplyr::mutate(GEOGRAPHY_ID = "53033") %>%
    dplyr::select(-GEOGRAPHY_ID_TYPE,-GEOGRAPHY_NAME,-GEOGRAPHY_TYPE) %>%
    dplyr::left_join(county_community_tract_all_metadata, by = "GEOGRAPHY_ID")

  # SUMMARIZE BY 3-YEAR SPAN ------------------------------------------------

  three_year_fields <- tibble::tribble(
    ~DATE_GROUP_ID, ~DATE_BEGIN, ~DATE_END, ~DATE_RANGE, ~DATE_RANGE_TYPE,
    "2013_2015", "2013-01-01", "2015-12-31", "20130101_20151231", "three years",
    "2016_2018", "2016-01-01", "2018-12-31", "20160101_20181231", "three years"
  )

  is_between_dates <- function(x, begin, end){

    dplyr::between(lubridate::ymd(x), lubridate::ymd(begin), lubridate::ymd(end))

  }

  summarize_by_3year <- function(x, variable_role){

    p_3year_only <- x %>%
      dplyr::mutate(DATE_GROUP_ID = dplyr::case_when(
        is_between_dates(DATE_BEGIN, "2013-01-01", "2015-12-31") ~ "2013_2015",
        is_between_dates(DATE_BEGIN, "2016-01-01", "2018-12-31") ~ "2016_2018",
        TRUE ~ NA_character_
      )) %>%
      dplyr::filter(! is.na(DATE_GROUP_ID)) %>% # drop sales outside of the two 3-year spans
      dplyr::select(-DATE_BEGIN, -DATE_END, -DATE_RANGE, -DATE_RANGE_TYPE) %>% # drop the original date fields
      dplyr::left_join(three_year_fields, by = "DATE_GROUP_ID")  # add the new replacement 3-year span date fields

    p_summary_by_3year <- p_3year_only %>%
      dplyr::group_by_at(dplyr::vars(-VARIABLE_SUBTOTAL,-VARIABLE_SUBTOTAL_DESC,-ESTIMATE,-MOE)) %>%
      dplyr::summarise(ESTIMATE = as.integer(round(median(ESTIMATE, na.rm = TRUE),0)),
                       N = n(),
                       NAS = sum(is.na(ESTIMATE)),
                       MOE = NA_real_) %>%
      dplyr::ungroup() %>%
      dplyr::select(-GEOGRAPHY_NAME,-GEOGRAPHY_TYPE, -GEOGRAPHY_ID_TYPE) %>%
      dplyr::left_join(county_community_tract_all_metadata, by = "GEOGRAPHY_ID")

    return(p_summary_by_3year)
  }


  parcel_value_median_3year <- summarize_by_3year(parcel_value_median)

  parcel_value_community_median_3year <- summarize_by_3year(community_value_median)

  parcel_value_county_median_3year <- summarize_by_3year(county_value_median)





  # JOIN --------------------------------------------------------

  indicators_median_value_3year_ready <- list(parcel_value_median_3year,
                                              parcel_value_community_median_3year,
                                              parcel_value_county_median_3year) %>%
    purrr::map_dfr(c) %>%
    dplyr::mutate(VARIABLE_DESC = stringr::str_replace(VARIABLE_DESC,"^VALUE","MEDIAN")) %>%
    dplyr::filter(VARIABLE_ROLE %in% "include") %>%
    dplyr::select(-dplyr::matches("VARIABLE_SUBTOTAL|VARIABLE_ROLE"))

  # REFORMAT ----------------------------------------------------------------

  # note: there is no need to reformat this object - that will happen in make_indicators_cnt_pct()

  # RETURN ------------------------------------------------------------------

  indicators_median_value_3year <- indicators_median_value_3year_ready

  return(indicators_median_value_3year_ready)



}

#' @rdname indicators_median
#' @export
make_indicators_median_value_1year <- function(parcel_value_variables,
                                               parcel_tract_overlay,
                                               county_community_tract_all_metadata,
                                               community_metadata){


  # PREPARE DATA --------------------------------------------------------

  parcel_value_median <- parcel_value_variables %>%
    dplyr::mutate(GEOGRAPHY_ID_JOIN = dplyr::case_when(
      META_PROPERTY_CATEGORY %in% "condo" ~ convert_to_complex_pin(GEOGRAPHY_ID),
      TRUE ~ GEOGRAPHY_ID
    )) %>%
    dplyr::left_join(parcel_tract_overlay, by = c(GEOGRAPHY_ID_JOIN = "PIN")) %>% # filter out parcels whose PINs don't match any tract GEOID
    dplyr::select(-GEOGRAPHY_ID_JOIN)  %>%
    dplyr::mutate(GEOGRAPHY_ID = GEOID,
                  GEOGRAPHY_ID_TYPE = "GEOID",
                  GEOGRAPHY_TYPE = "tract",
                  MEASURE_TYPE = "MEDIAN") %>%
    dplyr::select(-GEOID, -dplyr::matches("^META"))

  community_value_median <- parcel_value_median %>%
    dplyr::left_join(community_metadata, by = "GEOGRAPHY_ID") %>%
    dplyr::mutate(GEOGRAPHY_ID = GEOGRAPHY_COMMUNITY_ID,
                  GEOGRAPHY_ID_TYPE = GEOGRAPHY_COMMUNITY_ID_TYPE,
                  GEOGRAPHY_NAME = GEOGRAPHY_COMMUNITY_NAME,
                  GEOGRAPHY_TYPE = GEOGRAPHY_COMMUNITY_TYPE) %>%
    dplyr::select(-dplyr::matches("_COMMUNITY"))

  # create duplicates of the parcel variables that will be summarized
  # at the county level (instead of the tract level)

  county_value_median <- parcel_value_median %>%
    dplyr::mutate(GEOGRAPHY_ID = "53033") %>%
    dplyr::select(-GEOGRAPHY_ID_TYPE,-GEOGRAPHY_NAME,-GEOGRAPHY_TYPE) %>%
    dplyr::left_join(county_community_tract_all_metadata, by = "GEOGRAPHY_ID")

  # SUMMARIZE BY YEAR -------------------------------------------------------

  summarize_by_1year <- function(x){
    x %>%
      dplyr::mutate(DATE_BEGIN = lubridate::floor_date(lubridate::date(DATE_BEGIN), unit = "year"),
                    DATE_END = lubridate::ceiling_date(lubridate::date(DATE_BEGIN), unit = "year") - 1,
                    DATE_GROUP_ID = DATE_GROUP_ID,
                    DATE_RANGE = create_range_date(DATE_BEGIN, DATE_END),
                    DATE_RANGE_TYPE = "one year") %>%
      dplyr::mutate_if(lubridate::is.Date,as.character) %>%
      dplyr::group_by_at(dplyr::vars(-VARIABLE_SUBTOTAL,-VARIABLE_SUBTOTAL_DESC,-ESTIMATE,-MOE)) %>%
      dplyr::summarise(ESTIMATE = as.integer(round(median(ESTIMATE, na.rm = TRUE),0)),
                       N = n(),
                       NAS = sum(is.na(ESTIMATE)),
                       MOE = NA_real_) %>%
      dplyr::ungroup() %>%
      dplyr::select(-GEOGRAPHY_NAME,-GEOGRAPHY_TYPE, -GEOGRAPHY_ID_TYPE) %>%
      dplyr::left_join(county_community_tract_all_metadata, by = "GEOGRAPHY_ID")
  }

  parcel_value_median_1year <- summarize_by_1year(parcel_value_median)

  parcel_value_community_median_1year <- summarize_by_1year(community_value_median)

  parcel_value_county_median_1year <- summarize_by_1year(county_value_median)


  # JOIN --------------------------------------------------------

  indicators_median_value_1year_ready <- list(parcel_value_median_1year,
                                              parcel_value_community_median_1year,
                                              parcel_value_county_median_1year) %>%
    purrr::map_dfr(c) %>%
    dplyr::mutate(VARIABLE_DESC = stringr::str_replace(VARIABLE_DESC,"^VALUE","MEDIAN")) %>%
    dplyr::filter(VARIABLE_ROLE %in% "include") %>%
    dplyr::select(-dplyr::matches("VARIABLE_SUBTOTAL|VARIABLE_ROLE"))

  # REFORMAT ----------------------------------------------------------------

  # note: there is no need to reformat this object - that will happen in make_indicators_cnt_pct()

  # RETURN ------------------------------------------------------------------

  indicators_median_value_1year <- indicators_median_value_1year_ready

  return(indicators_median_value_1year)



}

#' @rdname indicators_median
#' @export
make_indicators_median_value_quarter <- function(parcel_value_variables,
                                                 parcel_tract_overlay,
                                                 county_community_tract_all_metadata,
                                                 community_metadata){


  # PREPARE DATA --------------------------------------------------------

  parcel_value_median <- parcel_value_variables %>%
    dplyr::mutate(GEOGRAPHY_ID_JOIN = dplyr::case_when(
      META_PROPERTY_CATEGORY %in% "condo" ~ convert_to_complex_pin(GEOGRAPHY_ID),
      TRUE ~ GEOGRAPHY_ID
    )) %>%
    dplyr::left_join(parcel_tract_overlay, by = c(GEOGRAPHY_ID_JOIN = "PIN")) %>% # filter out parcels whose PINs don't match any tract GEOID
    dplyr::select(-GEOGRAPHY_ID_JOIN)  %>%
    dplyr::mutate(GEOGRAPHY_ID = GEOID,
                  GEOGRAPHY_ID_TYPE = "GEOID",
                  GEOGRAPHY_TYPE = "tract",
                  MEASURE_TYPE = "MEDIAN") %>%
    dplyr::select(-GEOID, -dplyr::matches("^META"))

  community_value_median <- parcel_value_median %>%
    dplyr::left_join(community_metadata, by = "GEOGRAPHY_ID") %>%
    dplyr::mutate(GEOGRAPHY_ID = GEOGRAPHY_COMMUNITY_ID,
                  GEOGRAPHY_ID_TYPE = GEOGRAPHY_COMMUNITY_ID_TYPE,
                  GEOGRAPHY_NAME = GEOGRAPHY_COMMUNITY_NAME,
                  GEOGRAPHY_TYPE = GEOGRAPHY_COMMUNITY_TYPE) %>%
    dplyr::select(-dplyr::matches("_COMMUNITY"))

  # create duplicates of the parcel variables that will be summarized
  # at the county level (instead of the tract level)

  county_value_median <- parcel_value_median %>%
    dplyr::mutate(GEOGRAPHY_ID = "53033") %>%
    dplyr::select(-GEOGRAPHY_ID_TYPE,-GEOGRAPHY_NAME,-GEOGRAPHY_TYPE) %>%
    dplyr::left_join(county_community_tract_all_metadata, by = "GEOGRAPHY_ID")

  # SUMMARIZE BY QUARTER ----------------------------------------------------

  get_qtr_sequence <- function(date_x, date_y){
    seq(from = lubridate::floor_date(lubridate::ymd(date_x), unit = "year"),
        to = lubridate::ceiling_date(lubridate::ymd(date_y), unit = "year")-1,
        by = "quarter")
  }

  date_cols_qtr_full <- parcel_value_median %>%
    dplyr::select(DATE_BEGIN, DATE_END) %>%
    dplyr::distinct() %>%
    dplyr::transmute(QTR_DATE = purrr::map2(DATE_BEGIN, DATE_END,get_qtr_sequence)) %>%
    tidyr::unnest() %>%
    dplyr::transmute(DATE_BEGIN = lubridate::floor_date(lubridate::date(QTR_DATE), unit = "quarter"),
                     DATE_END = lubridate::ceiling_date(lubridate::date(QTR_DATE), unit = "quarter") - 1,
                     DATE_GROUP_ID = create_range_quarter(DATE_BEGIN, DATE_END),
                     DATE_RANGE = create_range_date(DATE_BEGIN, DATE_END),
                     DATE_RANGE_TYPE = "one quarter") %>%
    dplyr::mutate_if(lubridate::is.Date, as.character)



  summarize_by_quarter <- function(x, date_cols_qtr_full){

    summary_by_qtr_Q4_only <- x %>%
      dplyr::mutate(DATE_BEGIN = lubridate::floor_date(lubridate::date(DATE_BEGIN), unit = "quarter"),
                    DATE_END = lubridate::ceiling_date(lubridate::date(DATE_BEGIN), unit = "quarter") - 1,
                    DATE_GROUP_ID = create_range_quarter(DATE_BEGIN, DATE_END),
                    DATE_RANGE = create_range_date(DATE_BEGIN, DATE_END),
                    DATE_RANGE_TYPE = "one quarter") %>%
      dplyr::mutate_if(lubridate::is.Date,as.character) %>%
      dplyr::group_by(SOURCE,
                      GEOGRAPHY_ID,
                      GEOGRAPHY_ID_TYPE,
                      VARIABLE,
                      VARIABLE_DESC,
                      VARIABLE_ROLE,
                      INDICATOR,
                      DATE_GROUP_ID) %>%
      dplyr::summarise(MEASURE_TYPE = "MEDIAN", # this is less costly than adding this field to the group_by() call
                       ESTIMATE = as.integer(round(median(ESTIMATE, na.rm = TRUE),0)),
                       N = n(),
                       NAS = sum(is.na(ESTIMATE)),
                       MOE = NA_real_) %>%
      dplyr::ungroup() %>%
      dplyr::select(-GEOGRAPHY_ID_TYPE) %>%
      dplyr::left_join(county_community_tract_all_metadata, by = "GEOGRAPHY_ID")

    replace_q4 <- function(x, q){
      x %>% dplyr::mutate( DATE_GROUP_ID = stringr::str_replace_all(DATE_GROUP_ID, "Q4",q))
    }

    summary_by_qtr_all <- list("Q1", "Q2", "Q3") %>%
      purrr::map_dfr(~replace_q4(summary_by_qtr_Q4_only, q = .x)) %>%
      dplyr::bind_rows(summary_by_qtr_Q4_only) %>%
      dplyr::left_join(date_cols_qtr_full, by = "DATE_GROUP_ID")

    return(summary_by_qtr_all)
  }


  parcel_value_median_qtr <- summarize_by_quarter(parcel_value_median,
                                                  date_cols_qtr_full)

  parcel_value_community_median_qtr <- summarize_by_quarter(community_value_median,
                                                            date_cols_qtr_full)

  parcel_value_county_median_qtr <- summarize_by_quarter(county_value_median,
                                                         date_cols_qtr_full)


  # JOIN --------------------------------------------------------

  indicators_median_value_qtr_ready <- list(parcel_value_median_qtr,
                                        parcel_value_community_median_qtr,
                                        parcel_value_county_median_qtr) %>%
    purrr::map_dfr(c) %>%
    dplyr::mutate(VARIABLE_DESC = stringr::str_replace(VARIABLE_DESC,"^VALUE","MEDIAN")) %>%
    dplyr::filter(VARIABLE_ROLE %in% "include") %>%
    dplyr::select(-dplyr::matches("VARIABLE_SUBTOTAL|VARIABLE_ROLE"))

  # REFORMAT ----------------------------------------------------------------

  # note: there is no need to reformat this object - that will happen in make_indicators_cnt_pct()

  # RETURN ------------------------------------------------------------------

  indicators_median_value_quarter <- indicators_median_value_qtr_ready

  return(indicators_median_value_quarter)



}


#' @rdname indicators_median
#' @export
make_indicators_median_value_archive <- function(parcel_value_variables,
                                                 parcel_tract_overlay,
                                                 county_community_tract_all_metadata,
                                                 community_metadata){


  # PREPARE DATA --------------------------------------------------------

  convert_to_complex_pin <- function(x){stringr::str_replace(x,".{4}$","0000")}

  parcel_value_median <- parcel_value_variables %>%
    dplyr::mutate(GEOGRAPHY_ID_JOIN = dplyr::case_when(
      META_PROPERTY_CATEGORY %in% "condo" ~ convert_to_complex_pin(GEOGRAPHY_ID),
      TRUE ~ GEOGRAPHY_ID
    )) %>%
    dplyr::left_join(parcel_tract_overlay, by = c(GEOGRAPHY_ID_JOIN = "PIN")) %>% # filter out parcels whose PINs don't match any tract GEOID
    dplyr::select(-GEOGRAPHY_ID_JOIN)  %>%
    dplyr::mutate(GEOGRAPHY_ID = GEOID,
                  GEOGRAPHY_ID_TYPE = "GEOID",
                  GEOGRAPHY_TYPE = "tract",
                  MEASURE_TYPE = "MEDIAN") %>%
    dplyr::select(-GEOID, -dplyr::matches("^META"))

  community_value_median <- parcel_value_median %>%
    dplyr::left_join(community_metadata, by = "GEOGRAPHY_ID") %>%
    dplyr::mutate(GEOGRAPHY_ID = GEOGRAPHY_COMMUNITY_ID,
                  GEOGRAPHY_ID_TYPE = GEOGRAPHY_COMMUNITY_ID_TYPE,
                  GEOGRAPHY_NAME = GEOGRAPHY_COMMUNITY_NAME,
                  GEOGRAPHY_TYPE = GEOGRAPHY_COMMUNITY_TYPE) %>%
    dplyr::select(-dplyr::matches("_COMMUNITY"))

  # create duplicates of the parcel variables that will be summarized
  # at the county level (instead of the tract level)

  county_value_median <- parcel_value_median %>%
    dplyr::mutate(GEOGRAPHY_ID = "53033") %>%
    dplyr::select(-GEOGRAPHY_ID_TYPE,-GEOGRAPHY_NAME,-GEOGRAPHY_TYPE) %>%
    dplyr::left_join(county_community_tract_all_metadata, by = "GEOGRAPHY_ID")

  # SUMMARIZE BY 3-YEAR SPAN ------------------------------------------------

  three_year_fields <- tibble::tribble(
    ~DATE_GROUP_ID, ~DATE_BEGIN, ~DATE_END, ~DATE_RANGE, ~DATE_RANGE_TYPE,
    "2013_2015", "2013-01-01", "2015-12-31", "20130101_20151231", "three years",
    "2016_2018", "2016-01-01", "2018-12-31", "20160101_20181231", "three years"
  )

  is_between_dates <- function(x, begin, end){

    dplyr::between(lubridate::ymd(x), lubridate::ymd(begin), lubridate::ymd(end))

  }

  summarize_by_3year <- function(x, variable_role){

    p_3year_only <- x %>%
      dplyr::mutate(DATE_GROUP_ID = dplyr::case_when(
        is_between_dates(DATE_BEGIN, "2013-01-01", "2015-12-31") ~ "2013_2015",
        is_between_dates(DATE_BEGIN, "2016-01-01", "2018-12-31") ~ "2016_2018",
        TRUE ~ NA_character_
      )) %>%
      dplyr::filter(! is.na(DATE_GROUP_ID)) %>% # drop sales outside of the two 3-year spans
      dplyr::select(-DATE_BEGIN, -DATE_END, -DATE_RANGE, -DATE_RANGE_TYPE) %>% # drop the original date fields
      dplyr::left_join(three_year_fields, by = "DATE_GROUP_ID")  # add the new replacement 3-year span date fields

    p_summary_by_3year <- p_3year_only %>%
      dplyr::group_by_at(dplyr::vars(-VARIABLE_SUBTOTAL,-VARIABLE_SUBTOTAL_DESC,-ESTIMATE,-MOE)) %>%
      dplyr::summarise(ESTIMATE = as.integer(round(median(ESTIMATE, na.rm = TRUE),0)),
                       N = n(),
                       NAS = sum(is.na(ESTIMATE)),
                       MOE = NA_real_) %>%
      dplyr::ungroup() %>%
      dplyr::select(-GEOGRAPHY_NAME,-GEOGRAPHY_TYPE, -GEOGRAPHY_ID_TYPE) %>%
      dplyr::left_join(county_community_tract_all_metadata, by = "GEOGRAPHY_ID")

    return(p_summary_by_3year)
  }


  parcel_value_median_3year <- summarize_by_3year(parcel_value_median)

  parcel_value_community_median_3year <- summarize_by_3year(community_value_median)

  parcel_value_county_median_3year <- summarize_by_3year(county_value_median)





  # SUMMARIZE BY YEAR -------------------------------------------------------

  summarize_by_year <- function(x){
    x %>%
      dplyr::mutate(DATE_BEGIN = lubridate::floor_date(lubridate::date(DATE_BEGIN), unit = "year"),
                    DATE_END = lubridate::ceiling_date(lubridate::date(DATE_BEGIN), unit = "year") - 1,
                    DATE_GROUP_ID = DATE_GROUP_ID,
                    DATE_RANGE = create_range_date(DATE_BEGIN, DATE_END),
                    DATE_RANGE_TYPE = "one year") %>%
      dplyr::mutate_if(lubridate::is.Date,as.character) %>%
      dplyr::group_by_at(dplyr::vars(-VARIABLE_SUBTOTAL,-VARIABLE_SUBTOTAL_DESC,-ESTIMATE,-MOE)) %>%
      dplyr::summarise(ESTIMATE = as.integer(round(median(ESTIMATE, na.rm = TRUE),0)),
                       N = n(),
                       NAS = sum(is.na(ESTIMATE)),
                       MOE = NA_real_) %>%
      dplyr::ungroup() %>%
      dplyr::select(-GEOGRAPHY_NAME,-GEOGRAPHY_TYPE, -GEOGRAPHY_ID_TYPE) %>%
      dplyr::left_join(county_community_tract_all_metadata, by = "GEOGRAPHY_ID")
  }

  parcel_value_median_year <- summarize_by_year(parcel_value_median)

  parcel_value_community_median_year <- summarize_by_year(community_value_median)

  parcel_value_county_median_year <- summarize_by_year(county_value_median)


  # SUMMARIZE BY QUARTER ----------------------------------------------------

  get_qtr_sequence <- function(date_x, date_y){
    seq(from = lubridate::floor_date(lubridate::ymd(date_x), unit = "year"),
        to = lubridate::ceiling_date(lubridate::ymd(date_y), unit = "year")-1,
        by = "quarter")
  }

  date_cols_qtr_full <- parcel_value_median %>%
    dplyr::select(DATE_BEGIN, DATE_END) %>%
    dplyr::distinct() %>%
    dplyr::transmute(QTR_DATE = purrr::map2(DATE_BEGIN, DATE_END,get_qtr_sequence)) %>%
    tidyr::unnest() %>%
    dplyr::transmute(DATE_BEGIN = lubridate::floor_date(lubridate::date(QTR_DATE), unit = "quarter"),
                     DATE_END = lubridate::ceiling_date(lubridate::date(QTR_DATE), unit = "quarter") - 1,
                     DATE_GROUP_ID = create_range_quarter(DATE_BEGIN, DATE_END),
                     DATE_RANGE = create_range_date(DATE_BEGIN, DATE_END),
                     DATE_RANGE_TYPE = "one quarter") %>%
    dplyr::mutate_if(lubridate::is.Date, as.character)



  summarize_by_quarter <- function(x, date_cols_qtr_full){

    summary_by_qtr_Q4_only <- x %>%
      dplyr::mutate(DATE_BEGIN = lubridate::floor_date(lubridate::date(DATE_BEGIN), unit = "quarter"),
                    DATE_END = lubridate::ceiling_date(lubridate::date(DATE_BEGIN), unit = "quarter") - 1,
                    DATE_GROUP_ID = create_range_quarter(DATE_BEGIN, DATE_END),
                    DATE_RANGE = create_range_date(DATE_BEGIN, DATE_END),
                    DATE_RANGE_TYPE = "one quarter") %>%
      dplyr::mutate_if(lubridate::is.Date,as.character) %>%
      dplyr::group_by(SOURCE,
                      GEOGRAPHY_ID,
                      GEOGRAPHY_ID_TYPE,
                      VARIABLE,
                      VARIABLE_DESC,
                      INDICATOR,
                      DATE_GROUP_ID) %>%
      dplyr::summarise(ESTIMATE = as.integer(round(median(ESTIMATE, na.rm = TRUE),0)),
                       N = n(),
                       NAS = sum(is.na(ESTIMATE)),
                       MOE = NA_real_) %>%
      dplyr::ungroup() %>%
      dplyr::select(-GEOGRAPHY_ID_TYPE) %>%
      dplyr::left_join(county_community_tract_all_metadata, by = "GEOGRAPHY_ID")

    replace_q4 <- function(x, q){
      x %>% dplyr::mutate( DATE_GROUP_ID = stringr::str_replace_all(DATE_GROUP_ID, "Q4",q))
    }

    summary_by_qtr_all <- list("Q1", "Q2", "Q3") %>%
      purrr::map_dfr(~replace_q4(summary_by_qtr_Q4_only, q = .x)) %>%
      dplyr::bind_rows(summary_by_qtr_Q4_only) %>%
      dplyr::left_join(date_cols_qtr_full, by = "DATE_GROUP_ID")

    return(summary_by_qtr_all)
  }


  parcel_value_median_qtr <- summarize_by_quarter(parcel_value_median,
                                                  date_cols_qtr_full)

  parcel_value_community_median_qtr <- summarize_by_quarter(community_value_median,
                                                            date_cols_qtr_full)

  parcel_value_county_median_qtr <- summarize_by_quarter(county_value_median,
                                                         date_cols_qtr_full)


  # JOIN --------------------------------------------------------

  indicators_median_value_ready <- list(parcel_value_median_3year,
                                        parcel_value_community_median_3year,
                                        parcel_value_county_median_3year,
                                        parcel_value_median_year,
                                        parcel_value_community_median_year,
                                        parcel_value_county_median_year,
                                        parcel_value_median_qtr,
                                        parcel_value_community_median_qtr,
                                        parcel_value_county_median_qtr) %>%
    purrr::map_dfr(c) %>%
    dplyr::mutate(VARIABLE_DESC = stringr::str_replace(VARIABLE_DESC,"^VALUE","MEDIAN")) %>%
    dplyr::filter(VARIABLE_ROLE %in% "include") %>%
    dplyr::select(-dplyr::matches("VARIABLE_SUBTOTAL|VARIABLE_ROLE"))

  # REFORMAT ----------------------------------------------------------------

  # note: there is no need to reformat this object - that will happen in make_indicators_cnt_pct()

  # RETURN ------------------------------------------------------------------

  indicators_median_value <- indicators_median_value_ready

  return(indicators_median_value)



}



#' @rdname indicators_median
#' @export
make_indicators_median_sales <- function(parcel_sales_variables,
                                         parcel_tract_overlay,
                                         county_community_tract_all_metadata,
                                         community_metadata){


  # PREPARE DATA --------------------------------------------------------



  convert_to_complex_pin <- function(x){stringr::str_replace(x,".{4}$","0000")}

  parcel_sales_median <- parcel_sales_variables %>%
    dplyr::mutate(GEOGRAPHY_ID_JOIN = dplyr::case_when(
      META_PROPERTY_CATEGORY %in% "condo" ~ convert_to_complex_pin(GEOGRAPHY_ID),
      TRUE ~ GEOGRAPHY_ID
    )) %>%
    dplyr::left_join(parcel_tract_overlay, by = c(GEOGRAPHY_ID_JOIN = "PIN")) %>% # filter out parcels whose PINs don't match any tract GEOID
    dplyr::select(-GEOGRAPHY_ID_JOIN)  %>%
    dplyr::mutate(GEOGRAPHY_ID = GEOID,
                  GEOGRAPHY_ID_TYPE = "GEOID",
                  GEOGRAPHY_TYPE = "tract",
                  MEASURE_TYPE = "MEDIAN") %>%
    dplyr::select(-GEOID, -dplyr::matches("^META"))

  community_sales_median <- parcel_sales_median %>%
    dplyr::left_join(community_metadata, by = "GEOGRAPHY_ID") %>%
    dplyr::mutate(GEOGRAPHY_ID = GEOGRAPHY_COMMUNITY_ID,
                  GEOGRAPHY_ID_TYPE = GEOGRAPHY_COMMUNITY_ID_TYPE,
                  GEOGRAPHY_NAME = GEOGRAPHY_COMMUNITY_NAME,
                  GEOGRAPHY_TYPE = GEOGRAPHY_COMMUNITY_TYPE) %>%
    dplyr::select(-dplyr::matches("_COMMUNITY"))


  # create duplicates of the parcel variables that will be summarized
  # at the county level (instead of the tract level)

  county_sales_median <- parcel_sales_median %>%
    dplyr::mutate(GEOGRAPHY_ID = "53033") %>%
    dplyr::select(-GEOGRAPHY_ID_TYPE,-GEOGRAPHY_NAME,-GEOGRAPHY_TYPE) %>%
    dplyr::left_join(county_community_tract_all_metadata, by = "GEOGRAPHY_ID")



  # SUMMARIZE BY 3-YEAR SPAN ------------------------------------------------

  three_year_fields <- tibble::tribble(
    ~DATE_GROUP_ID, ~DATE_BEGIN, ~DATE_END, ~DATE_RANGE, ~DATE_RANGE_TYPE,
    "2013_2015", "2013-01-01", "2015-12-31", "20130101_20151231", "three years",
    "2016_2018", "2016-01-01", "2018-12-31", "20160101_20181231", "three years"
  )

  is_between_dates <- function(x, begin, end){

    dplyr::between(lubridate::ymd(x), lubridate::ymd(begin), lubridate::ymd(end))

  }

  summarize_by_3year <- function(x, variable_role){

    p_3year_only <- x %>%
      dplyr::mutate(DATE_GROUP_ID = dplyr::case_when(
        is_between_dates(DATE_BEGIN, "2013-01-01", "2015-12-31") ~ "2013_2015",
        is_between_dates(DATE_BEGIN, "2016-01-01", "2018-12-31") ~ "2016_2018",
        TRUE ~ NA_character_
      )) %>%
      dplyr::filter(! is.na(DATE_GROUP_ID)) %>% # drop sales outside of the two 3-year spans
      dplyr::select(-DATE_BEGIN, -DATE_END, -DATE_RANGE, -DATE_RANGE_TYPE) %>% # drop the original date fields
      dplyr::left_join(three_year_fields, by = "DATE_GROUP_ID")  # add the new replacement 3-year span date fields

    p_summary_by_3year <- p_3year_only %>%
      dplyr::group_by_at(dplyr::vars(-VARIABLE_SUBTOTAL,-VARIABLE_SUBTOTAL_DESC,-ESTIMATE,-MOE)) %>%
      dplyr::summarise(ESTIMATE = as.integer(round(median(ESTIMATE, na.rm = TRUE),0)),
                       N = n(),
                       NAS = sum(is.na(ESTIMATE)),
                       MOE = NA_real_) %>%
      dplyr::ungroup() %>%
      dplyr::select(-GEOGRAPHY_NAME,-GEOGRAPHY_TYPE, -GEOGRAPHY_ID_TYPE) %>%
      dplyr::left_join(county_community_tract_all_metadata, by = "GEOGRAPHY_ID")
  }


  parcel_sales_median_3year <- summarize_by_3year(parcel_sales_median)

  parcel_sales_community_median_3year <- summarize_by_3year(community_sales_median)

  parcel_sales_county_median_3year <- summarize_by_3year(county_sales_median)




  # SUMMARIZE DATA: BY YEAR -------------------------------------------------

  summarize_by_year <- function(x){

    x %>%
      dplyr::mutate(DATE_BEGIN = lubridate::floor_date(lubridate::date(DATE_BEGIN), unit = "year"),
                    DATE_END = lubridate::ceiling_date(lubridate::date(DATE_BEGIN), unit = "year") - 1,
                    DATE_GROUP_ID = DATE_GROUP_ID,
                    DATE_RANGE = DATE_GROUP_ID,
                    DATE_RANGE = create_range_date(DATE_BEGIN, DATE_END),
                    DATE_RANGE_TYPE = "one year") %>%
      dplyr::mutate_if(lubridate::is.Date,as.character) %>%
      dplyr::group_by_at(dplyr::vars(-VARIABLE_SUBTOTAL,-VARIABLE_SUBTOTAL_DESC,-ESTIMATE,-MOE)) %>%
      dplyr::summarise(ESTIMATE = as.integer(round(median(ESTIMATE, na.rm = TRUE),0)),
                       N = n(),
                       NAS = sum(is.na(ESTIMATE)),
                       MOE = NA_real_) %>%
      dplyr::ungroup() %>%
      dplyr::select(-GEOGRAPHY_NAME,-GEOGRAPHY_TYPE, -GEOGRAPHY_ID_TYPE) %>%
      dplyr::left_join(county_community_tract_all_metadata, by = "GEOGRAPHY_ID")
  }

  parcel_sales_median_year <- summarize_by_year(parcel_sales_median)

  parcel_sales_community_median_year <- summarize_by_year(community_sales_median)

  parcel_sales_county_median_year <- summarize_by_year(county_sales_median)


  # SUMMARIZE DATA: BY QUARTER ----------------------------------------------

  get_qtr_sequence <- function(date_x, date_y){
    seq(from = lubridate::floor_date(lubridate::ymd(date_x), unit = "year"),
        to = lubridate::ceiling_date(lubridate::ymd(date_y), unit = "year")-1,
        by = "quarter")
  }

  date_cols_qtr_full <- parcel_sales_median %>%
    dplyr::select(DATE_BEGIN, DATE_END) %>%
    dplyr::distinct() %>%
    dplyr::transmute(QTR_DATE = purrr::map2(DATE_BEGIN, DATE_END,get_qtr_sequence)) %>%
    tidyr::unnest() %>%
    dplyr::transmute(DATE_BEGIN = lubridate::floor_date(lubridate::date(QTR_DATE), unit = "quarter"),
                     DATE_END = lubridate::ceiling_date(lubridate::date(QTR_DATE), unit = "quarter") - 1,
                     DATE_GROUP_ID = create_range_quarter(DATE_BEGIN, DATE_END),
                     DATE_RANGE = create_range_date(DATE_BEGIN, DATE_END),
                     DATE_RANGE_TYPE = "one quarter") %>%
    dplyr::distinct() %>%
    dplyr::mutate_if(lubridate::is.Date, as.character)

  summarize_by_quarter <- function(x, date_cols_qtr_full){

    summary_by_qtr <- x %>%
      dplyr::mutate(DATE_BEGIN = lubridate::floor_date(lubridate::date(DATE_BEGIN), unit = "quarter"),
                    DATE_END = lubridate::ceiling_date(lubridate::date(DATE_BEGIN), unit = "quarter") - 1,
                    DATE_GROUP_ID = create_range_quarter(DATE_BEGIN, DATE_END),
                    DATE_RANGE = create_range_date(DATE_BEGIN, DATE_END),
                    DATE_RANGE_TYPE = "one quarter") %>%
      dplyr::mutate_if(lubridate::is.Date,as.character) %>%
      dplyr::group_by_at(dplyr::vars(-VARIABLE_SUBTOTAL,-VARIABLE_SUBTOTAL_DESC,-ESTIMATE,-MOE)) %>%
      dplyr::summarise(ESTIMATE = as.integer(round(median(ESTIMATE, na.rm = TRUE),0)),
                       N = n(),
                       NAS = sum(is.na(ESTIMATE)),
                       MOE = NA_real_) %>%
      dplyr::ungroup() %>%
      dplyr::select(-GEOGRAPHY_NAME,-GEOGRAPHY_TYPE, -GEOGRAPHY_ID_TYPE) %>%
      dplyr::left_join(county_community_tract_all_metadata, by = "GEOGRAPHY_ID")

    # it is possible that not every combination of DATE_GROUP_ID and quarter will be present
    #  if that is the case, use dplyr::expand() to add the missing combinations

    summary_by_qtr_complete <- summary_by_qtr %>%
      tidyr::expand(tidyr::nesting(SOURCE,
                                   GEOGRAPHY_ID,
                                   VARIABLE,
                                   VARIABLE_DESC,
                                   INDICATOR,
                                   VARIABLE_ROLE,
                                   GEOGRAPHY_ID_TYPE,
                                   GEOGRAPHY_NAME,
                                   GEOGRAPHY_TYPE),
                    DATE_GROUP_ID) %>%
      dplyr::left_join(date_cols_qtr_full, by = "DATE_GROUP_ID") %>%
      dplyr::left_join(summary_by_qtr,
                       by = c("SOURCE",
                              "GEOGRAPHY_ID",
                              "VARIABLE",
                              "VARIABLE_DESC",
                              "INDICATOR",
                              "VARIABLE_ROLE",
                              "GEOGRAPHY_ID_TYPE",
                              "GEOGRAPHY_NAME",
                              "GEOGRAPHY_TYPE",
                              "DATE_GROUP_ID",
                              "DATE_BEGIN",
                              "DATE_END",
                              "DATE_RANGE",
                              "DATE_RANGE_TYPE"))

    return(summary_by_qtr_complete)
  }


  parcel_sales_median_qtr <- summarize_by_quarter(parcel_sales_median,
                                                  date_cols_qtr_full)

  parcel_sales_community_median_qtr <- summarize_by_quarter(community_sales_median,
                                                            date_cols_qtr_full)

  parcel_sales_county_median_qtr <- summarize_by_quarter(county_sales_median,
                                                         date_cols_qtr_full)

  # JOIN --------------------------------------------------------

  indicators_median_sales_ready <- list( parcel_sales_median_3year,
                                         parcel_sales_community_median_3year,
                                         parcel_sales_county_median_3year,
                                         parcel_sales_median_year,
                                         parcel_sales_community_median_year,
                                         parcel_sales_county_median_year,
                                         parcel_sales_median_qtr,
                                         parcel_sales_community_median_qtr,
                                         parcel_sales_county_median_qtr) %>%
    purrr::map_dfr(c) %>%
    dplyr::mutate(VARIABLE_DESC = stringr::str_replace(VARIABLE_DESC,"^VALUE","MEDIAN")) %>%
    dplyr::filter(VARIABLE_ROLE %in% "include") %>%
    dplyr::select(-dplyr::matches("VARIABLE_SUBTOTAL|VARIABLE_ROLE"))


  # REFORMAT ----------------------------------------------------------------

  # note: there is no need to reformat this object - that will happen in make_indicators_cnt_pct()

  # RETURN ------------------------------------------------------------------

  indicators_median_sales <- indicators_median_sales_ready

  beep()
  return(indicators_median_sales)

}
tiernanmartin/NeighborhoodChangeTypology documentation built on May 17, 2019, 1:02 p.m.