R/ZIGZAG.R

Defines functions smooth_age_5_zigzag_inner smooth_age_5_zigzag_p smooth_age_5_zigzag_min

Documented in smooth_age_5_zigzag_inner smooth_age_5_zigzag_min smooth_age_5_zigzag_p

# Author: Tim Riffe, based on earlier version from Juan Galeano
###############################################################################

#' Objective function to minimize Feeney's zigzag method residual
#' @description This function is auxiliary to \code{smooth_age_5_zigzag_inner()}, see \code{?smooth_age_5_zigzag_inner} for a description.
#' @details This function is not intended to be used at the top level, but just in case, make sure that \code{ageMax = ageMin + 10 * length(p)}. Age groups \code{ >= ageMin} AND \code{ <= ageMin} must be in 5-year age groups. This function does no checks.
#' @param Value numeric vector of (presumably) counts in 5-year age groups.
#' @param Age integer vector of age group lower bounds.
#' @param ageMin integer. Lower age bound to adjust values.
#' @param ageMax integer. Upper age bound to adjust values.
#' @param p numeric vector of adjustment parameters.
#' @return positive residual to minimize.
#' @export
#' @importFrom stats optim
#' @references
#' Feeney, G. 2013 "Removing "Zigzag" from Age Data," http://demographer.com/white-papers/2013-removing-zigzag-from-age-data/
#' @examples
#'Age <- c(0,1,seq(5,90,by=5))
#'smooth_age_5_zigzag_min(dth5_zigzag,Age,ageMin=40,ageMax = 80,p=rep(.05,4))
#'# it's used like this in zigzag()
#'(p <- optim(
#'			rep(.05,4),
#'			smooth_age_5_zigzag_min,
#'			Value = dth5_zigzag,
#'			Age = Age,
#'			ageMin = 40,
#'			ageMax = 80)$par)
#' Smoothed <- smooth_age_5_zigzag_p(dth5_zigzag,Age,40,80,p)
#' # de facto unit test:
#' # check result using results frozen in Feeney spreadsheet
#' # after fixing probable cell range 'error'
#' p.feeney <- c(0.0235802695087692,0.0724286618207911,
#' 		      0.0242327829742267,0.0883411499065237)
#' ans      <- 106.1147411629
#' stopifnot(abs(smooth_age_5_zigzag_min(dth5_zigzag, Age, 40,80,p.feeney) - ans) < 1e-6)
smooth_age_5_zigzag_min <- function(Value,
                       Age,
                       ageMin = 40,
                       ageMax = 80,
                       p) {

  # first, we need an odd number of age groups to smooth over.
  # we enforce this
  
  
  Smoothed <- smooth_age_5_zigzag_p(
    Value = Value,
    Age = Age,
    ageMin = ageMin,
    ageMax = ageMax,
    p = p
  )
  
  # multiplier
  id <- abs(Smoothed - Value) > 1e-6
  
  # adjacent avg
  avg2  <- avg_adj(Smoothed) * id
  
  # difference squared
  diffsq <- (Smoothed - avg2) ^ 2 * id
  
  # return weighted sum sq dev
  sum(diffsq * 1 / Smoothed, na.rm = TRUE)
  
}

#' Smooth population counts using Feeney's zigzag method and smoothing parameters.
#' @description This function is auxiliary to \code{zigzag()}, see \code{?zigzag} for a description.
#' @details This function is not intended to be used at the top level, but just in case, make sure that \code{ageMax = ageMin + 10 * length(p)}. Age groups \code{ >= ageMin} AND \code{ <= ageMin} must be in 5-year age groups. This function does no checks.
#' @param Value numeric vector of (presumably) counts in 5-year age groups.
#' @param Age integer vector of age group lower bounds.
#' @param ageMin integer. Lower age bound to adjust values.
#' @param ageMax integer. Upper age bound to adjust values.
#' @param p numeric vector of adjustment parameters.
#' @return numeric vector of smoothed population counts.
#' @export
#' @references
#' Feeney, G. 2013 "Removing "Zigzag" from Age Data," http://demographer.com/white-papers/2013-removing-zigzag-from-age-data/
#' @examples
#'Age <- c(0,1,seq(5,90,by=5))
#'smooth_age_5_zigzag_min(dth5_zigzag,Age,ageMin=40,ageMax = 80,p=rep(.05,4))
#'# it's used like this in smooth_age_5_zigzag_inner()
#'(p <- optim(
#'			rep(.05,4),
#'			smooth_age_5_zigzag_min,
#'			Value = dth5_zigzag,
#'			Age = Age,
#'			ageMin = 40,
#'			ageMax = 80)$par)
#' Smoothed <- smooth_age_5_zigzag_p(dth5_zigzag,Age,40,80,p)

smooth_age_5_zigzag_p <- function(Value,
                     Age,
                     ageMin = 40,
                     ageMax = 80,
                     p = rep(0.05, floor((ageMax - ageMin) / 10))) {
  # 1) p used differently
  p_ages      <- as.integer(seq(ageMin + 5, ageMin + length(p) * 10 - 5, length = length(p)))
  mid5        <- Age %in% p_ages
  down5       <- Age %in% (p_ages - 5)
  up5         <- Age %in% (p_ages + 5)
  
  # 2) this can be a multiplier later
  id          <- rep(0, length(Age))
  id[Age >= (min(p_ages) - 5) & Age <= (max(p_ages) + 5)] <- 1
  
  # 2) average of value above and below
  avg1        <- avg_adj(Value) * id
  
  # 3) take difference
  diff1       <- (Value - avg1) * id
  
  # 5) get Np
  Np          <- Value[mid5] * p # should be 4 numbers in example
  
  # 6) use Np to smooth
  Smoothed                <- Value
  Smoothed[mid5]          <- Value[mid5] - Np
  Smoothed[down5]         <- Smoothed[down5] + Np / 2
  Smoothed[up5]           <- Smoothed[up5] + Np / 2
  
  # return smoothed
  names(Smoothed) <- Age
  Smoothed
}

#' G. Feeney's method of removing the zigzag from counts in 5-year age groups.
#' @description If age heaping is much worse on 0's than on 5's then even counts in 5-year age bins can preserve a sawtooth pattern. Most graduation techniques translate the zig-zag/sawtooth pattern to a wave pattern. It is not typically desired. This method redistributes counts 'from' every second 5-year age group in a specified range 'to' the adjacent age groups. How much to redistribute depends on a detection of roughness in the 5-year binned data, which follows the formulas recommended by Feeney.
#' @details Determining the degree to redistribute population counts is an optimization problem, so this function has two auxiliary functions, \code{p_zigzag()}, which redistributes counts according to a set of specified proportions \code{p}, and \code{zigzag_min()} which is the function minimized to determine the optimal vector of \code{p}. If data is not in 5-year age groups then it is grouped as necessary (unless abridged, in which case grouping is preserved). Only ages \code{>= ageMin} and \code{<= ageMax} will be adjusted. \code{ageMax} is inclusive and interpreted as the lower bound of the highest age group to include. The number of 5-year age groups adjusted must be odd, and \code{ageMax} may be reduced internally without warning in order to force this condition. The open age group is excluded from adjustment. This function also has a wrapper \code{smooth_age_5_zigzag()}, called by \code{smooth_age_5()}.
#' @param Value numeric vector of (presumably) counts in 5-year age groups.
#' @param Age integer vector of age group lower bounds.
#' @param OAG logical. Whether or not the top age group is open. Default \code{TRUE}.
#' @param ageMin integer. Lower age bound to adjust values.
#' @param ageMax integer. Upper age bound to adjust values.
#' @return numeric vector of smoothed counts in 5-year age groups.
#' @export
#' @references
#' Feeney, G. 2013 "Removing "Zigzag" from Age Data," http://demographer.com/white-papers/2013-removing-zigzag-from-age-data/
#' @examples
#' Age <- c(0,1,seq(5,90,by=5))
#' # defaults
#' zz1 <- smooth_age_5_zigzag_inner(dth5_zigzag, Age, OAG = TRUE, ageMin = 40, ageMax = 80)
#' # shift age range up by 5
#' zz2 <- smooth_age_5_zigzag_inner(dth5_zigzag, Age, OAG = TRUE, ageMin = 45, ageMax = 85)
#' \dontrun{
#' plot(Age, dth5_zigzag,pch = 16)
#' lines(Age,zz1,col="red",lty=1)
#' lines(Age,zz2,col="blue",lty=1)
#' # even smoother:
#' lines(Age,(zz2+zz1)/2,col="green",lty=1)
#' legend("bottom",pch=c(16,NA,NA,NA),
#' 		lty=c(NA,1,1,1),
#' 		col = c("black","red","blue","green"),
#' 		legend = c("Original","40-80","45-85","avg"))
#' }

smooth_age_5_zigzag_inner <- function(Value,
                   Age,
                   OAG = TRUE,
                   ageMin = 40,
                   ageMax = max(Age) - max(Age) %% 10 - 5) {
  stopifnot(length(Age) == length(Value))
  
  Age        <- as.integer(Age)
  
  if (!is_abridged(Age)) {
    Value5     <- groupAges(Value, Age = Age, N = 5)
    Age5       <- as.integer(names(Value5))
  } else {
    Value5     <- Value
    Age5       <- Age
  }
  
  N          <- length(Value5)
  NN         <- N
  # make sure we have a suitable span of age.
  Ndecades <- floor((ageMax - ageMin) / 10) * 10
  if ((ageMax - ageMin) - Ndecades != 5) {
    ageMax   <- ageMin + Ndecades + 5
  }
  # enforce 5-year age groups. Data could be given as such,
  # in abridged ages, or in single ages, but will be returned
  # in 5-year age groups.
  if (OAG) {
    OAGvalue  <- Value5[N]
    Value5[N] <- NA
    NN        <- N - 1
  }
  
  # make sure ageMax isn't too high. Likely doesn't come into play.
  if (ageMax > max(Age5[1:NN])) {
    hm     <- ceiling((ageMax - max(Age5[1:NN])) / 10) * 10
    ageMax <- ageMax - hm
  }
  Ndecades <- floor((ageMax - ageMin) / 10)
  # get starting values for p. Number of values to optimize
  # depends on age range in question.
  p        <- rep(0.05, Ndecades)
  # get optimal p
  p        <-
    optim(
      p,
      smooth_age_5_zigzag_min,
      Value = Value5,
      Age = Age5,
      ageMin = ageMin,
      ageMax = ageMax
    )$par
  # and resulting smoothed pops
  Smoothed <-
    smooth_age_5_zigzag_p(
      Value = Value5,
      Age = Age5,
      ageMin = ageMin,
      ageMax = ageMax,
      p = p
    )
  
  # put OAG back.
  if (OAG) {
    Smoothed[N] <- OAGvalue
  }
  names(Smoothed) <- Age5
  
  Smoothed
}
timriffe/DemoTools documentation built on Oct. 14, 2024, 12:53 p.m.