dev/Bachi.R

# Author: tim
###############################################################################



#' calculate Bachi's index of age heaping

#' @description Two Implementations: one following the PASEX spreadsheet SINGAGE (\code{pasex = TRUE}), with ages hard-coded, and another with flexible upper and lower age bounds, but that does not match the PASEX implementation.

#' @param Value a vector of demographic counts by single age
#' @param Age a vector of ages corresponding to the lower integer bound of the counts
#' @param ageMin the lowest age included in calcs. Default 30
#' @param ageMax the upper age bound used for calcs. Default 80
#' @param pasex logical default \code{FALSE}. Do we want to reproduce the specific age weightings in the PASEX spreadsheet?
#' 
#' @details \code{ageMax} is the hard upper bound, treated as interval. If you want ages
#' 20 to 89, then give \code{ageMin = 20} and \code{ageMax = 90}, not 89. These are only heeded if \code{pasex = FALSE}.
#' @return the index value 
#' @export 


Bachi <- function(Value, Age, ageMin = 30, ageMax = 80, pasex = FALSE){
	
	
	# make a matrix for numerators
	w1           <- matrix(0, nrow = length(Age), ncol = 10)
	w2           <- matrix(0, nrow = length(Age), ncol = 10)
	 
	if (pasex){
		w1[Age %in% seq(30,70,10),1]  <- 1
		w1[Age %in% seq(31,71,10),2]  <- 1
		w1[Age %in% seq(32,72,10),3]  <- 1
		w1[Age %in% seq(33,63,10),4]  <- 1
		w1[Age %in% c(23,73),4]       <- .5
		w1[Age %in% seq(34,64,10),5]  <- 1
		w1[Age %in% c(24,74),5]       <- .5
		w1[Age %in% seq(35,65,10),6]  <- 1
		w1[Age %in% c(25,75),6]       <- .5
		w1[Age %in% seq(36,66,10),7]  <- 1
		w1[Age %in% c(26,76),7]       <- .5
		w1[Age %in% seq(37,67,10),8]  <- 1
		w1[Age %in% c(27,77),8]       <- .5
		w1[Age %in% seq(28,68,10),9]  <- 1
		w1[Age %in% seq(29,69,10),10] <- 1
		
		# more quirky ranges
		w2[Age > 25 & Age < 75,1]     <- 1
		w2[Age %in% c(25,75),1]       <- .5
		w2[Age > 26 & Age < 76,2]     <- 1
		w2[Age %in% c(26,76),2]       <- .5
		w2[Age > 27 & Age < 77,3]     <- 1
		w2[Age %in% c(27,77),3]       <- .5
		w2[Age > 23 & Age < 73,4]     <- 1
		w2[Age %in% c(23,73),4]       <- .5
		w2[Age > 24 & Age < 74,5]     <- 1
		w2[Age %in% c(24,74),5]       <- .5
		w2[Age > 25 & Age < 75,6]     <- 1
		w2[Age %in% c(25,75),6]       <- .5
		w2[Age > 26 & Age < 76,7]     <- 1
		w2[Age %in% c(26,76),7]       <- .5
		w2[Age > 27 & Age < 77,8]     <- 1
		w2[Age %in% c(27,77),8]       <- .5
		w2[Age > 23 & Age < 73,9]     <- 1
		w2[Age %in% c(23,73),9]       <- .5
		w2[Age > 24 & Age < 74,10]    <- 1
		w2[Age %in% c(24,74),10]      <- .5
	} else {
		markers      <- row(w1) - col(w1)
		w1[markers %% 10 == 0 & markers >= ageMin & markers < ageMax]   <- 1
		w2[markers == ageMin - 5 | markers == ageMax - 5] <- .5
		w2[markers > ageMin - 5 & markers < ageMax - 5]   <- 1
	}
	
	numerators   <- colSums(Value * w1)
	denominators <- colSums(Value * w2)
	
	ratio   <- 100 * numerators / denominators
	ratioeq <- ratio - 10
	sum(abs(ratioeq))  / 2
}

#Value <- c(80626,95823,104315,115813,100796,105086,97266,116328,
#75984,89982,95525,56973,78767,65672,53438,85014,
#47600,64363,42195,42262,73221,30080,34391,29072,
#20531,66171,24029,44227,24128,23599,82088,16454,
#22628,17108,12531,57325,17220,28425,16206,17532,
#65976,11593,15828,13541,8133,44696,11165,18543,
#12614,12041,55798,9324,10772,10453,6773,28358,
#9916,13348,8039,7583,42470,5288,5317,6582,
#3361,17949,3650,5873,3279,3336,27368,1965,
#2495,2319,1335,12022,1401,1668,1360,1185,
#9167,424,568,462,282,6206,343,409,333,291,4137,133,169,157,89,2068,68,81,66,57)
#Age <- 0:99
# still calibrating
#Bachi(Value, Age, ageMin = 20, ageMax = 80, pasex= TRUE) # reproduces PASEX SINGAGE
#Bachi(Value, Age, ageMin = 20, ageMax = 80) # default simpler
timriffe/DemoTools documentation built on Oct. 14, 2024, 12:53 p.m.