#' Cook-Weisberg Score Test for Heteroskedasticity in a Linear Regression Model
#'
#' This function implements the score test of
#' \insertCite{Cook83;textual}{skedastic} for testing for heteroskedasticity
#' in a linear regression model.
#'
#' @details The Cook-Weisberg Score Test entails fitting an auxiliary
#' regression model in which the response variable is the vector of
#' standardised squared residuals \eqn{e_i^2/\hat{\omega}} from the original
#' OLS model and the design matrix is some function of \eqn{Z}, an
#' \eqn{n \times q} matrix consisting of \eqn{q} exogenous variables,
#' appended to a column of ones. The test statistic is half the residual sum
#' of squares from this auxiliary regression. Under the null hypothesis of
#' homoskedasticity, the distribution of the test statistic is
#' asymptotically chi-squared with \eqn{q} degrees of freedom. The test is
#' right-tailed.
#'
#' @param hetfun A character describing the form of \eqn{w(\cdot)}, the error
#' variance function under the heteroskedastic alternative. Possible values
#' are \code{"mult"} (the default), corresponding to
#' \eqn{w(Z_i,\lambda)=\exp\left\{\sum_{j=1}^{q}\lambda_j Z_{ij}\right\}},
#' \code{"add"}, corresponding to
#' \eqn{w(Z_i,\lambda)=\left(1+\sum_{j=1}^{q} \lambda_j Z_{ij}\right)^2}, and
#' \code{"logmult"}, corresponding to
#' \eqn{w(Z_i,\lambda)=\exp\left\{\sum_{j=1}^{q}\lambda_j \log Z_{ij}\right\}}.
#' The multiplicative and log-multiplicative cases are considered in
#' \insertCite{Cook83;textual}{skedastic}; the additive case is discussed,
#' \emph{inter alia}, by \insertCite{Griffiths86;textual}{skedastic}.
#' Results for the additive and multiplicative models are identical for this
#' test. Partial matching is used.
#' @inheritParams breusch_pagan
#'
#' @return An object of \code{\link[base]{class}} \code{"htest"}. If object is
#' not assigned, its attributes are displayed in the console as a
#' \code{\link[tibble]{tibble}} using \code{\link[broom]{tidy}}.
#' @references{\insertAllCited{}}
#' @importFrom Rdpack reprompt
#' @export
#' @seealso \code{\link[car:ncvTest]{car::ncvTest}}, which implements the same
#' test. Calling \code{car::ncvTest} with \code{var.formula} argument omitted
#' is equivalent to calling \code{skedastic::cook_weisberg} with
#' \code{auxdesign = "fitted.values", hetfun = "additive"}. Calling
#' \code{car::ncvTest} with \code{var.formula = ~ X} (where \code{X} is the
#' design matrix of the linear model with the intercept column omitted) is
#' equivalent to calling \code{skedastic::cook_weisberg} with default
#' \code{auxdesign} and \code{hetfun} values. The
#' \code{hetfun = "multiplicative"} option has no equivalent in
#' \code{car::ncvTest}.
#'
#' @examples
#' mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
#' cook_weisberg(mtcars_lm)
#' cook_weisberg(mtcars_lm, auxdesign = "fitted.values", hetfun = "logmult")
#'
cook_weisberg <- function(mainlm, auxdesign = NA,
hetfun = c("mult", "add", "logmult"), statonly = FALSE) {
hetfun <- match.arg(hetfun, c("mult", "add", "logmult"))
auxfitvals <- ifelse(all(is.na(auxdesign)) | is.null(auxdesign), FALSE,
auxdesign == "fitted.values")
processmainlm(m = mainlm, needy = auxfitvals, needyhat = auxfitvals,
needp = FALSE)
if (all(is.na(auxdesign)) || is.null(auxdesign)) {
Z <- X
} else if (is.character(auxdesign)) {
if (auxdesign == "fitted.values") {
Z <- t(t(yhat))
} else stop("Invalid character value for `auxdesign`")
} else {
Z <- auxdesign
if (nrow(auxdesign) != nrow(X)) stop("No. of observations in `auxdesign`
must match\nno. of observations in
original model.")
}
hasintercept <- columnof1s(Z)
if (hasintercept[[1]]) {
Z <- Z[, -hasintercept[[2]], drop = FALSE]
}
q <- ncol(Z)
n <- nrow(Z)
if (hetfun == "mult") {
Z <- cbind(1, Z)
} else if (hetfun == "logmult") {
Z <- cbind(1, log(Z))
} else if (hetfun == "add") {
Z <- cbind(1, 2 * Z)
} else stop("Invalid hetfun argument")
sigma_hatsq <- sum(e ^ 2) / n
std_res_sq <- e ^ 2 / sigma_hatsq
auxres <- stats::lm.fit(Z, std_res_sq)$residuals
teststat <- (sum(std_res_sq ^ 2) - n * mean(std_res_sq) ^ 2 - sum(auxres ^ 2)) / 2
if (statonly) return(teststat)
method <- hetfun
pval <- stats::pchisq(teststat, df = q, lower.tail = FALSE)
rval <- structure(list(statistic = teststat, parameter = q, p.value = pval,
null.value = "Homoskedasticity",
alternative = "greater", method = method),
class = "htest")
broom::tidy(rval)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.