#' Glejser Test for Heteroskedasticity in a Linear Regression Model
#'
#' This function implements the method of
#' \insertCite{Glejser69;textual}{skedastic} for testing for "multiplicative"
#' heteroskedasticity in a linear regression model.
#' \insertCite{Mittelhammer00;textual}{skedastic} gives the
#' formulation of the test used here.
#'
#' @details Glejser's Test entails fitting an auxiliary regression model in
#' which the response variable is the absolute residual from the original
#' model and the design matrix \eqn{Z} consists of one or more exogenous
#' variables that are suspected of being related to the error variance.
#' In the absence of prior information on a possible choice of \eqn{Z},
#' one would typically use the explanatory variables from the original model.
#' Under the null hypothesis of homoskedasticity, the distribution of the
#' test statistic is asymptotically chi-squared with \code{parameter} degrees
#' of freedom. The test is right-tailed.
#'
#' @param sigmaest A character indicating which model residuals to use in the
#' \eqn{\hat{\omega}} estimator in the denominator of the test statistic.
#' If \code{"main"} (the default), the OLS residuals from the original model
#' are used; this produces results identical to the Glejser Test in SHAZAM
#' software. If \code{"auxiliary"}, the OLS residuals from the auxiliary
#' model are used, as in \insertCite{Mittelhammer00;textual}{skedastic}.
#' Partial matching is used.
#' @inheritParams breusch_pagan
#'
#' @return An object of \code{\link[base]{class}} \code{"htest"}. If object is
#' not assigned, its attributes are displayed in the console as a
#' \code{\link[tibble]{tibble}} using \code{\link[broom]{tidy}}.
#' @references{\insertAllCited{}}
#' @importFrom Rdpack reprompt
#' @export
#' @seealso the description of the test in
#' \href{http://www.econometrics.com/intro/testhet.htm}{SHAZAM} software
#' (which produces identical results).
#'
#' @examples
#' mtcars_lm <- lm(mpg ~ wt + qsec + am, data = mtcars)
#' glejser(mtcars_lm)
#'
glejser <- function(mainlm, auxdesign = NA,
sigmaest = c("main", "auxiliary"), statonly = FALSE) {
sigmaest <- match.arg(sigmaest, c("main", "auxiliary"))
auxfitvals <- ifelse(all(is.na(auxdesign)) | is.null(auxdesign), FALSE,
auxdesign == "fitted.values")
processmainlm(m = mainlm, needy = auxfitvals, needyhat = auxfitvals,
needp = FALSE)
if (all(is.na(auxdesign)) || is.null(auxdesign)) {
Z <- X
} else if (is.character(auxdesign)) {
if (auxdesign == "fitted.values") {
Z <- t(t(yhat))
} else stop("Invalid character value for `auxdesign`")
} else {
Z <- auxdesign
if (nrow(auxdesign) != nrow(X)) stop("No. of observations in `auxdesign`
must match\nno. of observations in
original model.")
}
hasintercept <- columnof1s(Z)
if (!hasintercept[[1]]) {
Z <- cbind(1, Z)
message("Column of 1's added to `auxdesign`")
}
q <- ncol(Z) - 1
n <- nrow(Z)
auxresponse <- abs(e)
auxres <- stats::lm.fit(Z, auxresponse)$residuals
if (sigmaest == "main") {
sigma_hatsq <- sum(e ^ 2) / n
} else if (sigmaest == "auxiliary") {
sigma_hatsq <- sum(auxres ^ 2) / n
}
teststat <- (sum(auxresponse ^ 2) - n * mean(auxresponse) ^ 2 -
sum(auxres ^ 2)) / (sigma_hatsq * (1 - 2 / pi))
if (statonly) return(teststat)
pval <- stats::pchisq(teststat, df = q, lower.tail = FALSE)
rval <- structure(list(statistic = teststat, parameter = q, p.value = pval,
null.value = "Homoskedasticity",
alternative = "greater"), class = "htest")
broom::tidy(rval)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.