Description Usage Arguments Value Examples
Will vary each parameter independently in a chosen range and report the value of the resulting simulated moments in relation to the moments in the data. Can be used to construct a heuristic identification argument. Basically it can be seen which parameter affects which dimension of the model output, i.e. which simulated moment.
1 | compute.slices(mcf, ns = 30, pad = 0.1, file = "est.slices.RData")
|
mcf |
object of class mopt |
ns |
number of points in each dimension to evaluate |
pad |
from bounds of parameter ranges. e.g. p in [0,1], avoid 0 and 1 with pad>0. |
file |
|
list with info and a data.frame slices
summarizing all information of the exercise: parameter values,
simulated moments, data moments. Input to plot.slices(slices)
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | # generate slices for a model
require(mopt)
# let's take a dummy objective function
MOPT_OBJ_FUNC <- objfc.norm2(c(0,0),ns=2000)
# starting parameters
p <- list(x1=0.5,x2=0.5)
MOPT_OBJ_FUNC(p)
# then we want to setup the mopt
mcf = mopt_config(p)
mcf$wd = getwd()
mcf$params_to_sample = c('x1','x2')
mcf$moments_to_use = c('m1','m2')
mcf$mode = 'multicore'
mcf$algo = algo.bgp
# set the parameter bounds
mcf <- mcf +
samplep('x1',-1,1) +
samplep('x2',-1,1)
# adding data moment values
mcf <- mcf + datamoments(c('m1','m2'),
c(0,0),
c(0.1,0.1))
# prepare to run with OpenMP
require(parallel)
options(mc.cores = detectCores())
# finalize the preparation
mcf <- prepare.mopt_config(mcf)
# compute slices and generate plots
res <- compute.slices(mcf,ns=30,pad=0.1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.