context("test-svm.R -- General testing for Support Vector Machines")
library(sl3)
library(testthat)
library(e1071)
# define test dataset
data(mtcars)
task <- sl3_Task$new(mtcars, covariates = c(
"cyl", "disp", "hp", "drat", "wt", "qsec",
"vs", "am", "gear", "carb"
), outcome = "mpg")
task2 <- sl3_Task$new(mtcars, covariates = c(
"cyl", "disp", "hp", "drat", "wt", "qsec",
"vs", "am", "gear", "carb"
), outcome = "mpg")
task_binaryY <- sl3_Task$new(mtcars, covariates = c(
"cyl", "disp", "hp", "drat", "wt", "qsec",
"mpg", "am", "gear", "carb"
), outcome = "vs")
test_learner <- function(learner, task, binary_task = F, ...) {
# test learner definition this requires that a learner can be instantiated
# with only default arguments. Not sure if this is a reasonable requirement
learner_obj <- learner$new(...)
print(sprintf("Testing Learner: %s", learner_obj$name))
# test learner training
fit_obj <- learner_obj$train(task)
test_that("Learner can be trained on data", expect_true(fit_obj$is_trained))
# test learner prediction
train_preds <- fit_obj$predict()
test_that("Learner can generate training set predictions", expect_equal(
sl3:::safe_dim(train_preds)[1],
length(task$Y)
))
if (!binary_task) {
holdout_preds <- fit_obj$predict(task2)
test_that("Learner can generate holdout set predictions", expect_equal(
train_preds,
holdout_preds
))
}
# test learner chaining
chained_task <- fit_obj$chain()
test_that("Chaining returns a task", {
expect_true(is(chained_task, "sl3_Task"))
})
test_that("Chaining returns the correct number of rows", {
expect_equal(nrow(chained_task$X), nrow(task$X))
})
}
## test svm learner:
test_learner(Lrnr_svm, task)
test_learner(Lrnr_svm, task2)
test_learner(Lrnr_svm, task_binaryY, binary_task = T)
test_that("Lrnr_svm predictions match those from svm", {
## instantiate Lrnr_svm, train on task, and predict on task
lrnr_svm <- Lrnr_svm$new()
fit_lrnr_svm <- lrnr_svm$train(task)
prd_lrnr_svm <- fit_lrnr_svm$predict()
## fit svm using the data from the task
fit_svm <- svm(
x = task$X, y = task$Y, scale = TRUE, kernel = "radial",
fitted = TRUE, probability = FALSE
)
prd_svm <- as.numeric(predict(fit_svm, newdata = task$X))
## test equivalence of prediction from Lrnr_svm and svm::svm
expect_equal(prd_lrnr_svm, prd_svm)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.