View source: R/tab_dimensionreduction.R
plotPCAVarPvalue | R Documentation |
The function plotPCAVarPvalue
plots the p-values of significances of
principal components. Using the visual output, the optimal number of
principal components can be selected.
plotPCAVarPvalue(var_x, var_perm)
var_x |
|
var_perm |
|
Internal usage in shinyQC
.
gg
object from ggplot
Thomas Naake
x <- matrix(seq_len(100), ncol = 10)
pca <- dimensionReduction(x = x, params = list(center = TRUE, scale = TRUE),
type = "PCA")[[2]]
var_x <- explVar(d = pca, type = "PCA")
var_perm <- permuteExplVar(x = x, n = 100, center = TRUE, scale = TRUE)
plotPCAVarPvalue(var_x = var_x, var_perm = var_perm)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.