# weighted trimmed mean (depends on pkg survey)
svymean_trimmed <- function(x, design, LB = 0.05, UB = 1 - LB, na.rm = FALSE,
...)
{
dat <- .check_formula(x, design, na.rm)
# in the presence of NA's
if (dat$failure)
return(.new_svystat_rob("mean", dat$yname,
paste0("Weighted trimmed estimator (", LB, ", ", UB, ")"),
dat$design, match.call(), "trim", LB = LB, UB = UB))
res <- weighted_mean_trimmed(dat$y, dat$w, LB, UB, TRUE, FALSE)
# influence function
infl <- .infl_trimmed(res$model$y, res$model$w, LB, UB, res$estimate) *
res$model$w / sum(res$model$w)
if (dat$calibrated) {
tmp <- numeric(length(dat$in_domain))
tmp[dat$in_domain] <- infl
infl <- tmp
}
# variance
design <- dat$design
res$variance <- svyrecvar(infl, design$cluster, design$strata, design$fpc,
postStrata = design$postStrata)
# return
names(res$estimate) <- dat$yname
res$design <- dat$design
res$call <- match.call()
class(res) <- "svystat_rob"
res
}
# weighted trimmed total (depends on pkg survey)
svytotal_trimmed <- function(x, design, LB = 0.05, UB = 1 - LB, na.rm = FALSE,
...)
{
dat <- .check_formula(x, design, na.rm)
# in the presence of NA's
if (dat$failure)
return(.new_svystat_rob("total", dat$yname,
paste0("Weighted trimmed estimator (", LB, ", ", UB, ")"),
dat$design, match.call(), "trim", LB = LB, UB = UB))
res <- weighted_total_trimmed(dat$y, dat$w, LB, UB, TRUE, FALSE)
# influence function
infl <- .infl_trimmed(res$model$y, res$model$w, LB, UB, 0) * res$model$w
if (dat$calibrated) {
tmp <- numeric(length(dat$in_domain))
tmp[dat$in_domain] <- infl
infl <- tmp
}
# variance
design <- dat$design
res$variance <- svyrecvar(infl, design$cluster, design$strata, design$fpc,
postStrata = design$postStrata)
# return
names(res$estimate) <- dat$yname
res$design <- dat$design
res$call <- match.call()
class(res) <- "svystat_rob"
res
}
# influence function, Huber (1981, p. 58)
.infl_trimmed <- function(x, w, LB, UB, tm)
{
qs <- weighted_quantile(x, w, probs = c(LB, UB))
x_wins <- pmin.int(qs[2], pmax.int(qs[1], x))
# functional W corresponding to winsorized mean
W <- (UB - LB) * tm + LB * qs[1] + (1 - UB) * qs[2]
# return
(x_wins - W) / (UB - LB)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.