#### OK estimate_YpredMR ######################################################
#' Estimator Ypred.MR
#'
#' Function that implements estimator Ypred.MR
#' @inheritParams estimate_wtd
#' @inheritParams estimate_Ypred
#' @family estimators
#' @family MR-estimators
#' @export
estimate_YpredMR <- function(
data,
s.wt.var = NULL,
cross.world = "10",
effect.scale = "MD",
boot.num = 999,
boot.seed = NULL,
boot.method = "cont-wt",
boot.stratify = TRUE,
a.c.form,
a.cm.form,
max.stabilized.wt = 30,
plot = TRUE,
c.std = NULL,
m.std = NULL,
c.order = NULL,
m.order = NULL,
y.c.form = NULL,
y.c1.form = NULL,
y.c0.form = NULL,
y10.c.form = NULL,
y01.c.form = NULL,
y.link = "identity"
) {
# CLEAN INPUTS
c.vars <- m.vars <- y.family <- NULL
.prep_YpredMR()
key.inputs <- mget(c("cross.world",
"effect.scale",
"a.c.form",
"a.cm.form",
"max.stabilized.wt",
"y.c1.form",
"y.c0.form",
"y10.c.form",
"y01.c.form",
"y.family"))
# POINT ESTIMATION
if (!plot) {
estimates <- do.call(".point_est.YpredMR",
c(key.inputs, list(data = data,
output.data = FALSE)))
} else {
tmp <- do.call(".point_est.YpredMR",
c(key.inputs, list(data = data,
output.data = TRUE)))
estimates <- tmp$estimates
plots <- .plot_YpredMR(w.dat = tmp$w.dat,
cross.world = cross.world,
c.vars = c.vars,
m.vars = m.vars,
c.std = c.std,
m.std = m.std); rm(tmp)
}
# BOOTSTRAP
if (boot.num > 0) {
ci.se <- .boot_ci.se(data = data,
stratify = boot.stratify,
boot.num = boot.num,
seed = boot.seed,
method = boot.method,
FUN = ".point_est.YpredMR",
FUN.inputs = key.inputs)
estimates <- cbind(estimate = estimates,
ci.se)
rm(ci.se)
}
# OUTPUT
if (!plot && boot.num==0) return(estimates)
out <- list(estimates = estimates)
if (boot.num > 0) out$boot.seed <- boot.seed
if (plot) out$plots <- plots
out
}
#### OK .prep_YpredMR #########################################################
#' @rdname dot-prep
#' @order 10
.prep_YpredMR <- function() {
top.env <- parent.frame()
.setup_data(top.env)
.clean_cross.world(top.env)
.clean_effect.scale(top.env)
.clean_boot(top.env)
.clean_weights.med(top.env)
.clean_y.YpredMR(top.env)
if (top.env$plot) .check_plot.med(top.env)
}
#### OK .clean_y.YpredMR ################################################
#' @rdname dot-clean_y
#' @order 6
.clean_y.YpredMR <- function(env) {
yes10 <- ("10" %in% env$cross.world)
yes01 <- ("01" %in% env$cross.world)
in_c.vars <- env$c.vars
y.c <- env$y.c.form
y.c1 <- env$y.c1.form
y.c0 <- env$y.c0.form
y10.c <- env$y10.c.form
y01.c <- env$y01.c.form
if (is.null(y.c)) {
if (is.null(y.c1))
stop("Must specify either y.c1.form or y.c.form.")
if (is.null(y.c0))
stop("Must specify either y.c0.form or y.c.form.")
if (yes10 && is.null(y10.c))
stop("For cross.world==\"10\", must specify either y10.c.form or y.c.form.")
if (yes01 && is.null(y01.c))
stop("For cross.world==\"01\", must specify either y01.c.form or y.c.form.")
} else {
if (is.null(y.c1)) y.c1 <- y.c
if (is.null(y.c0)) y.c0 <- y.c
if (yes10 && is.null(y10.c)) y10.c <- y.c
if (yes01 && is.null(y01.c)) y01.c <- y.c
}
env$y.c1.form <- y.c1
env$y.c0.form <- y.c0
env$y10.c.form <- y10.c
env$y01.c.form <- y01.c
y.var <- unique(c(all.vars(formula(y.c1)[[2]]),
all.vars(formula(y.c0)[[2]])))
if (yes10) y.var <- unique(c(y.var, all.vars(formula(y10.c)[[2]])))
if (yes01) y.var <- unique(c(y.var, all.vars(formula(y01.c)[[2]])))
if (length(y.var)>1)
stop("Outcome variable is not unique across outcome models.")
env$data$.y <- env$data[, y.var]
c.vars <- unique(c(all.vars(formula(y.c1)[[3]]),
all.vars(formula(y.c0)[[3]])))
if (yes10) c.vars <- unique(c(c.vars, all.vars(formula(y10.c)[[3]])))
if (yes01) c.vars <- unique(c(c.vars, all.vars(formula(y01.c)[[3]])))
stray.c <- setdiff(c.vars, in_c.vars)
if (length(stray.c)>0)
stop(paste("Covariate(s)", paste(stray.c, collapse = ", "), "in outcome model(s) not found in a.c.form."))
y.link <- env$y.link
if (!(y.link %in% c("identity", "logit", "logistic", "log")))
stop("y.link not recognized or supported. Supported options include: \"identity\" (for linear model with numeric outcome), \"logit\" (for binary outcome or outcome bounded in (0,1) interval), and \"log\" (for non-negative outcome).")
if (length(unique(env$data$.y))==2) {
if (!(y.link %in% c("logit", "logistic")))
warning("The outcome is binary. Logit model is used.")
env$y.family <- "quasibinomial"
} else if (is.numeric(env$data$.y) && all(env$data$.y>=0)) {
if (y.link=="log") {
env$y.family <- "quasipoisson"
} else if (y.link=="identity") {
env$y.family <- "gaussian"
} else if (all(env$data$.y<=1)) {
env$y.family <- "quasibinomial"
} else {
warning("Logit link not allowed for outcome that is non-binary and not bounded in the (0,1) interval. Identity link is used instead. May also consider log link.")
env$y.family <- "gaussian"
}
} else if (is.numeric(env$data$.y)) {
if (!y.link=="identity")
warning("Outcome is numeric variable with negative values. Identity link is used.")
env$y.family <- "gaussian"
} else
stop("Outcome type not supported.")
}
#### OK .point_est.YpredMR ####################################################
#' @rdname dot-point_est
#' @order 5
.point_est.YpredMR <- function(
data,
cross.world,
effect.scale,
a.c.form,
a.cm.form,
max.stabilized.wt = 30,
output.data = FALSE,
y.c1.form,
y.c0.form,
y10.c.form = NULL,
y01.c.form = NULL,
y.family
) {
w.dat <- .compute_weights.med(
data = data,
cross.world = cross.world,
a.c.form = a.c.form,
a.cm.form = a.cm.form,
max.stabilized.wt = max.stabilized.wt
)
p11 <- w.dat[w.dat$.samp=="p11", ]
p00 <- w.dat[w.dat$.samp=="p00", ]
full <- rbind(p11, p00)
full$.w.wt <- 1
full$.f.wt <- full$.s.wt
y.c1.p11 <- glm(formula = y.c1.form,
data = p11,
weights = data$.f.wt,
family = y.family)
y.c0.p00 <- glm(formula = y.c0.form,
data = p00,
weights = data$.f.wt,
family = y.family)
pred <- full[".f.wt"]
pred$p00 <- predict(y.c0.p00, newdata = full, type = "response")
pred$p11 <- predict(y.c1.p11, newdata = full, type = "response")
if ("10" %in% cross.world) {
p10 <- w.dat[w.dat$.samp=="p10", ]
y10.c.p10 <- glm(formula = y10.c.form,
data = p10,
weights = data$.f.wt,
family = y.family)
pred$p10 <- predict(y10.c.p10, newdata = full, type = "response")
}
if ("01" %in% cross.world) {
p01 <- w.dat[w.dat$.samp=="p01", ]
y01.c.p01 <- glm(formula = y01.c.form,
data = p01,
weights = data$.f.wt,
family = y.family)
pred$p01 <- predict(y01.c.p01, newdata = full, type = "response")
}
pred <- .reshape_gather(pred,
columns = setdiff(colnames(pred), ".f.wt"),
key = ".samp",
value = ".y",
wide.row = FALSE)
estimates <- .get_means.and.effects(w.dat = pred,
effect.scale = effect.scale)
if (!output.data) return(estimates)
list(estimates = estimates,
w.dat = w.dat)
}
#### OK .plot_YpredMR #########################################################
#' @rdname dot-plot_w.dat
#' @order 6
.plot_YpredMR <- function(w.dat,
cross.world,
c.vars,
m.vars,
c.std,
m.std) {
c(.plot_wt_dist(w.dat),
.plot_balance.YpredMR(w.dat = w.dat,
cross.world = cross.world,
c.vars = c.vars,
m.vars = m.vars,
c.std = c.std,
m.std = m.std))
}
#### OK .plot_balance.YpredMR #################################################
#' @rdname dot-plot_balance
#' @order 6
.plot_balance.YpredMR <- function(w.dat,
cross.world,
c.vars,
m.vars,
c.std,
m.std) {
smd.dat <- .get_smd.med(w.dat = w.dat,
c.vars = c.vars,
m.vars = m.vars,
c.std = c.std,
m.std = m.std)
full.balance <-
ggplot(data = smd.dat,
aes(x = .data$mean.diff,
y = factor(.data$variable,
levels = rev(levels(.data$variable))))) +
geom_vline(xintercept = 0,
color = "gray60") +
geom_point(aes(color = .data$var.type,
shape = .data$contrast.type),
fill = "white",
size = 1.5,
stroke = .5) +
labs(x = "differences in means",
y = "") +
scale_color_manual(name = "", values = c("black", "magenta")) +
scale_shape_manual(name = "", values = c(21, 19)) +
theme_bw() +
xlim(min(c(-.3, smd.dat$mean.diff)),
max(c( .3, smd.dat$mean.diff))) +
facet_wrap(~.data$contrast, ncol = 3)
if (all(c("10", "01") %in% cross.world)) {
smd.dat <- smd.dat[smd.dat$contrast %in% c("p10 - p00",
"p11 - p01"), ]
} else if (cross.world=="10") {
smd.dat <- smd.dat[smd.dat$contrast=="p10 - p00", ]
} else if (cross.world=="01") {
smd.dat <- smd.dat[smd.dat$contrast=="p11 - p01", ]
}
smd.dat$contrast <- as.character(smd.dat$contrast)
smd.dat$contrast <- ifelse(smd.dat$contrast=="p11 - p01",
"p01 - p11",
smd.dat$contrast)
smd.dat$mean.diff <- ifelse(smd.dat$contrast=="p01 - p11",
-smd.dat$mean.diff,
smd.dat$mean.diff)
key.balance <-
ggplot(data = smd.dat,
aes(x = .data$mean.diff,
y = factor(.data$variable,
levels = rev(levels(.data$variable))))) +
geom_vline(xintercept = 0,
color = "gray60") +
geom_point(aes(shape = .data$contrast.type),
fill = "white",
size = 1.5,
stroke = .5) +
labs(x = "differences in means",
y = "") +
scale_shape_manual(name = "", values = c(21, 19)) +
theme_bw() +
xlim(min(c(-.3, smd.dat$mean.diff)),
max(c( .3, smd.dat$mean.diff))) +
facet_wrap(~.data$contrast, ncol = 2)
mget(c("key.balance", "full.balance"))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.