library(coolit.train)
library(raster)
library(stringr)
img_dir <- "data/source_from-ct-website/ct-images"
out_dir <- "data/curated-training-slices/ct/ct-slices"
img_file_names <- data.frame(
img_file = list.files(img_dir, full.names = TRUE,
recursive = TRUE, pattern = "\\.jp2$"),
stringsAsFactors = FALSE
)
img_file_names$stub <- str_match(img_file_names$img_file,
"(.*/)*(.*)\\.jp2$")[, 3]
already_sliced <- list.files(out_dir, pattern = "\\.rds$")
already_sliced <- str_match(already_sliced, "^(.*)_slices\\.rds$")[, 2]
img_file_names <- img_file_names[!(img_file_names$stub %in% already_sliced), ]
images_to_slice <- split(img_file_names, 1:nrow(img_file_names))
cl <- parallel::makeCluster(40)
parallel::clusterEvalQ(cl, {
library(coolit.train)
library(raster)
library(sf)
})
parallel::clusterExport(cl, c("out_dir"))
parallel::parLapplyLB(images_to_slice, cl = cl, fun = function(img) {
temp_img <- brick(img[["img_file"]])
if (nlayers(temp_img) > 3) {
bonus_layers <- nlayers(temp_img) - 3
bonus_layers <- rev(seq_len(bonus_layers) + 3)
for (i in bonus_layers) {
temp_img <- dropLayer(temp_img, i)
}
}
try({
slice_data <- slice_image(
img_object = temp_img,
slice_n_rows = 50,
slice_n_cols = 50,
slice_overlap = 0,
complete_image = TRUE,
verbose = FALSE
)
slice_data$img_id <- img[["stub"]]
rm(temp_img)
saveRDS(slice_data,
file.path(out_dir, paste0(img[["stub"]], "_slices.rds")))
rm(slice_data)
gc()
})
})
parallel::stopCluster(cl)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.