#' Helper function for compartment inference
#'
#' Want an object with nominally Gaussian error for compartment inference, so
#' this function uses 'suitable' (defaults to to 3 or more reads in 2 or more
#' samples) measurements. Using Dirichlet smoothing (adding 'k' reads to M
#' and U), these measurements are then turned into lightly moderated,
#' logit-transformed methylated-fraction estimates for compartment calling.
#'
#' @param x A bsseq object with methylated and total reads
#' @param minCov Minimum read coverage for landmarking samples (DEFAULT: 3)
#' @param minSamp Minimum landmark samples with at least minCov (DEFAULT: 2)
#' @param k Pseudoreads for smoothing (DEFAULT: 0.1)
#' @param r Regions to collapse over - if NULL, do it by CpG
#' (DEFAULT: NULL)
#'
#' @return Smoothed logit(M / Cov) GRanges with coordinates as row names
#'
#' @import gtools
#' @import bsseq
#' @importFrom methods is
#'
#' @aliases getMvals
#'
#' @examples
#'
#' orig_bed <- system.file("extdata", "MCF7_Cunha_chr11p15.bed.gz",
#' package="biscuiteer")
#' orig_vcf <- system.file("extdata", "MCF7_Cunha_header_only.vcf.gz",
#' package="biscuiteer")
#' bisc <- readBiscuit(BEDfile = orig_bed, VCFfile = orig_vcf,
#' merged = FALSE)
#'
#' reg <- GRanges(seqnames = rep("chr11",5),
#' strand = rep("*",5),
#' ranges = IRanges(start = c(0,2.8e6,1.17e7,1.38e7,1.69e7),
#' end= c(2.8e6,1.17e7,1.38e7,1.69e7,2.2e7))
#' )
#'
#' frac <- getLogitFracMeth(bisc, minSamp = 1, r = reg)
#'
#' @export
#'
getLogitFracMeth <- function(x,
minCov = 3,
minSamp = 2,
k = 0.1,
r = NULL) {
# do any loci/regions have enough read coverage in enough samples?
if (!is.null(r) && is(r, "GenomicRanges")) {
covgs <- getCoverage(x, sort(r), type="Cov", what="perRegionTotal")
} else {
covgs <- getCoverage(x, type="Cov", what="perBase")
}
usable <- DelayedMatrixStats::rowSums2(covgs >= minCov) >= minSamp
if (!any(usable)) stop("No usable loci/regions ( >= minCov in >= minSamp )!")
# construct a subset of the overall BSseq object with smoothed mvalues
if (!is.null(r) && is(r, "GenomicRanges")) {
out <- subset(sort(r), usable)
smoothed <- getSmoothedLogitFrac(x, k=k, minCov=minCov, r=out)
} else {
out <- subset(x, usable) # Leave as BSseq object
smoothed <- getSmoothedLogitFrac(out, k=k, minCov=minCov)
out <- granges(out) # Pull out GRanges portion for output
}
mcols(out) <- as.data.frame(smoothed)
return(out)
}
# Helper function to find smoothed logit fraction
# x: bsseq object
# k: pseudoreads for smoothing (DEFAULT: 0.1)
# minCov: minimum coverage (DEFAULT: 3)
# maxFrac: maximum fraction of NAs allowed (DEFAULT 0.5)
# r: regions to collapse over
getSmoothedLogitFrac <- function(x,
k = 0.1,
minCov = 3,
maxFrac = 0.5,
r = NULL) {
if (!is.null(r) && is(r, "GenomicRanges")) {
M <- getCoverage(x, sort(r), type="M", what="perRegionTotal")
U <- getCoverage(x, sort(r), type="Cov", what="perRegionTotal") - M
rnames <- as.character(sort(r))
} else {
M <- getCoverage(x, type="M", what="perBase")
U <- getCoverage(x, type="Cov", what="perBase") - M
rnames <- as.character(granges(x))
}
res <- logit((M + k) / ((M + k) + (U + k)))
rownames(res) <- rnames
makeNA <- ((M + U) < minCov)
maxPct <- paste0(100 * maxFrac, "%")
tooManyNAs <- (DelayedMatrixStats::colSums2(makeNA)/nrow(x)) > maxFrac
if (any(tooManyNAs)) {
message(paste(colnames(x)[tooManyNAs],collapse=", ")," are >",maxPct," NA!")
}
res[ makeNA ] <- NA
return(res)
}
#' @describeIn getLogitFracMeth Alias for getLogitFracMeth
#'
getMvals <- getLogitFracMeth
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.