Sleuth for our purposes...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | library(dplyr)
library(sleuth)
library(biomaRt)
base_dir <- system.file("extdata", "", package="artemisData")
sample_id <- grep("[ns][124]", dir(base_dir), value=TRUE)
kal_dirs <- paste(base_dir, sample_id, sep=.Platform$file.sep)
covs <- data.frame(sample=sample_id,
condition=as.factor(substr(sample_id, 1, 1)),
subject=as.factor(substr(sample_id, 2, 2)))
mart <- biomaRt::useMart(biomart = "ensembl",
dataset = "hsapiens_gene_ensembl")
t2g <- biomaRt::getBM(mart = mart,
attributes = c("ensembl_transcript_id",
"ensembl_gene_id",
"transcript_biotype",
"gene_biotype",
"external_gene_name"))
t2g <- dplyr::rename(t2g,
target_id = ensembl_transcript_id,
ens_gene = ensembl_gene_id,
ext_gene = external_gene_name)
## Showstopper: duplicated rows "LTR26B", "SVA_A" in all 6 samples!
## Can handle this pre-quant in artemis and/or post-quant in sleuth
## TxDbLite could also handle this by merging transcript annotation
##
so <- sleuth_prep(kal_dirs, covs, ~ condition, target_mapping = t2g)
so <- sleuth_fit(so)
so <- sleuth_test(so, which_beta = 'conditions')
## shiny interface
sleuth_live(so)
## static output
results_table <- sleuth_results(so, 'conditions')
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.