library(tidyverse)
library(crayon)
# set up pop.model
model_test <- pop_model(
# age category
wgt_cat(name = "age",
value = c("18-34", "35-54", "55+"),
targ_prop = c(0.320, 0.350, 0.330)),
# gender category
wgt_cat(name = "gender",
value = c("Female", "Male"),
targ_prop = c(0.54, 0.46)),
# vehicle category
wgt_cat(name = "vehicle",
value = c("Car", "SUV", "Truck"),
targ_prop = c(0.380, 0.470, 0.150))
)
# read in data and force an initial wgt value of 1
data_test <- read_rds("./data/test_data.RData") %>%
mutate(wgt = 1)
iterake <- function(data, pop.model, wgt.name = "weight", id.name = "id", wgt.lim = 3, threshold = 1e-10, max.iter = 50)
{
# initialize things
check <- 1
count <- 0
# check if id variable name exists - if not, make it
if (!(id.name %in% names(data))) {
data <- data %>%
mutate(!!id.name := 1:nrow(.))
}
# do the loops until the threshold is reached
while (check > threshold) {
# iteration limit check
if (count >= max.iter) {
n <- nrow(data)
data <- NULL
break
}
# loop through each variable in pop.model$wgt_cat to generate weight
for (i in 1:length(pop.model$wgt_cat)) {
# merge data
data <- merge(
data,
# with a merge of target proportion data
merge(pop.model$data[[i]],
# and current weighted proportions data
data %>%
group_by(get(pop.model$wgt_cat[[i]])) %>%
summarise(act_prop = sum(wgt) / nrow(.)) %>%
set_names("value", "act_prop"),
by = "value") %>%
# calculate weight needed based on targ and actual proportions
mutate(wgt_temp = ifelse(act_prop == 0, 0, targ_prop / act_prop)) %>%
# only keep variable value and weight
select(value,
wgt_temp),
by.x = pop.model$wgt_cat[[i]],
by.y = "value") %>%
# and then multiply the merged wgt_temp by orig weight
mutate(wgt = wgt * wgt_temp,
# and force them to be no larger than wgt.lim, no smaller than 1/wgt.lim
wgt = ifelse(wgt >= wgt.lim, wgt.lim,
ifelse(wgt <= 1/wgt.lim,
1/wgt.lim, wgt))) %>%
# and remove wgt_temp
select(-wgt_temp)
}
# reset/initialize check value
check <- 0
# loop through each to calculate discrepencies
for (i in 1:length(pop.model$wgt_cat)) {
# check is the sum of whatever check already is
check <- check +
# plus the sum of a pull from a merge of target proportions
sum(merge(pop.model$data[[i]],
# and current weighted proportions data
data %>%
group_by(get(pop.model$wgt_cat[[i]])) %>%
summarise(act_prop = sum(wgt) / nrow(.)) %>%
set_names("value", "act_prop"),
by = "value") %>%
# calculate diff between targ and actual
mutate(prop_diff = abs(targ_prop - act_prop)) %>%
# pull for sum
pull(prop_diff))
}
count <- count + 1
}
# what to return
if (is.null(data)) {
out_bad <- red $ bold
cat('-- ' %+% bold('iterake diagnostics') %+% ' -----------------\n')
cat(' Convergence: ' %+% out_bad('Failed '%+% '\U2718') %+% '\n')
cat(' Iterations: ' %+% out_bad(max.iter) %+% '\n\n')
cat('Unweighted N: ' %+% out_bad(n) %+% '\n')
cat(' Effective N: ' %+% out_bad('--') %+% '\n')
cat(' Weighted N: ' %+% out_bad('--') %+% '\n')
cat(' Efficiency: ' %+% out_bad('--') %+% '\n')
cat(' Loss: ' %+% out_bad('--') %+% '\n')
out <- NULL
} else {
out <- data %>%
select(id.name, wgt) %>%
arrange(get(id.name)) %>%
as_tibble()
wgt <- out$wgt
n <- nrow(out)
wgt_n <- sum(wgt)
neff <- (sum(wgt) ^ 2) / sum(wgt ^ 2)
loss <- round((n / neff) - 1, 3)
efficiency <- (neff / n)
out_good <- green $ bold
cat('-- ' %+% bold('iterake diagnostics') %+% ' -----------------\n')
cat(' Convergence: ' %+% out_good('Success '%+% '\U2714') %+% '\n')
cat(' Iterations: ' %+% out_good(count) %+% '\n\n')
cat('Unweighted N: ' %+% out_good(n) %+% '\n')
cat(' Effective N: ' %+% out_good(round(neff, 2)) %+% '\n')
cat(' Weighted N: ' %+% out_good(wgt_n) %+% '\n')
cat(' Efficiency: ' %+% out_good(scales::percent(round(efficiency, 4))) %+% '\n')
cat(' Loss: ' %+% out_good(loss) %+% '\n')
}
# assign id/weight variable names here
out %>%
set_names(id.name, wgt.name)
}
out <- iterake(data_test, model_test)
clean <- data_test %>%
select(-wgt) %>%
left_join(out)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.