# Inizialization ----------------------------------------------------------
# Loading the libraries
library(fda.usc)
library(energy)
library(entropy)
library(partykit)
source("functions.R")
# Loading the dataset
load("sim_data.RData")
# Errors
ACC_etree <- c()
# Response and covariates lists construction ------------------------------
# Restriction on the observations' number (for computational reasons)
obs <- sample(1:798, 150)
# Response
resp <- lapply(data, function(x) x$cls[obs])[[1]]
#remark: we take the first element since the dataset contains 100 simulations
### Classification with a functional predictors and a numeric one ###
#the numeric is one of the basis of another simulation of the same dataset
foo <- fda.usc::optim.basis(lapply(data, function(x) fdata(x[obs,2:129]))[[2]], numbasis = 15)
fd3 <- fda.usc::fdata2fd(foo$fdata.est,
type.basis = "bspline",
nbasis = foo$numbasis.opt)
foo$coef <- t(fd3$coefs)
cov.list <- list(lapply(data, function(x) fdata(x[obs,2:129]))[[1]],
foo$coef[,8])
### Classification with three covariates: functional, graph & numeric ###
# Generation of the graphs with a different connection probability for each class
graph.list <- lapply(resp,
function(c){
if (c == 'Bel'){
sample_gnp(100, 0.10)
} else if (c == 'Cyl'){
sample_gnp(100, 0.125)
} else if (c == 'Fun'){
sample_gnp(100, 0.15)
}
})
# Covariates for the full mixed model
cov.list <- list(lapply(data, function(x) fdata(x[obs,2:129]))[[1]], graph.list, foo$coef[,8])
# Model fitting -----------------------------------------------------------
# Number of basis
n.bas <- 15
### CLASSIFICATION ENERGY TREE ###
etree_fit <- etree(response = resp,
covariates = cov.list,
case.weights = NULL,
minbucket = 5,
alpha = 0.05,
R = 1000,
split.type = 'coeff',
coef.split.type = 'test')
plot(etree_fit)
# Prediction --------------------------------------------------------------
### ETREE CLASSIFICATION PREDICTION ###
# Prediction
y_pred <- predict(etree_fit)
# Prediction with newdata
graph.list2 <- lapply(resp,
function(c){
if (c == 'Bel'){
sample_gnp(100, 0.10)
} else if (c == 'Cyl'){
sample_gnp(100, 0.125)
} else if (c == 'Fun'){
sample_gnp(100, 0.15)
}
})
new.cov.list <- list(lapply(data, function(x) fdata(x[obs,2:129]))[[2]], graph.list2, foo$coef[,8])
y_pred2 <- predict(etree_fit, newdata = new.cov.list)
# Error
y <- resp
t <- table(y_pred, y)
ACC_etree <- sum(diag(t))/(length(y))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.