# Inizialization ----------------------------------------------------------
# Loading the libraries
library(energy)
library(partykit)
library(cluster)
library(igraph)
library(NetworkDistance)
#source("functions.R")
# Error(s)
MEP_etree <- c()
# Response and covariates lists construction ------------------------------
# Graph simulations
graph.list <- list()
n <- 5 #number of graphs of type 1 & number of graphs of type 2
for(i in 1:n){
graph.list[[i]] <- sample_gnp(100,0.1) #type1
graph.list[[n+i]] <- sample_gnp(100,0.12) #type2
}
# Response
resp <- sapply(graph.list, ecount) #number of edges in each graph
# Only one covariate
cov.list <- list(graph.list)
# Two covariates
graph.list2 <- lapply(resp, function(n.edges){sample_gnm(100, n.edges)})
# so that we have different graphs, with the same number of edges (i.e. resp) for i=1,...,n
cov.list <- list(graph.list, graph.list2)
# Model fitting -----------------------------------------------------------
### REGRESSION ENERGY TREE ###
etree_fit <- etree(response = resp,
covariates = cov.list,
case.weights = NULL,
minbucket = 5,
alpha = 0.05,
R = 1000,
split.type = 'cluster',
coef.split.type = 'test')
plot(etree_fit)
# Prediction --------------------------------------------------------------
### ETREE PREDICTION ###
# Prediction
y_pred <- predict(etree_fit)
# Prediction with newdata
graph.list3 <- lapply(resp, function(n.edges){sample_gnm(100, n.edges)})
graph.list4 <- lapply(resp, function(n.edges){sample_gnm(100, n.edges)})
new.cov.list <- list(graph.list3, graph.list4)
y_pred <- predict(etree_fit, newdata = new.cov.list)
# Error
y <- resp
MEP_etree <- (sum((y-y_pred)^2)/length(y))/(var(y))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.