##########################################################################################
# Designed and developed by Tinniam V Ganesh
# Date : 5 Nov 2021
# Function: teamERAcrossOversOppnAllMatches
# This function computes economy rate across overs in all matches against opposition in powerplay, middle and death overs
#
###########################################################################################
#' @title
#' Compute the ER by team against team in powerplay, middle and death overs in all matches
#'
#' @description
#' This function plots the ER by team against team in in powerplay, middle and death overs
#'
#' @usage
#' teamERAcrossOversOppnAllMatches(matches,t1,t2,plot=1)
#'
#' @param matches
#' The dataframe of the matches
#'
#' @param t1
#' The 1st team of the match
#'
#' @param t2
#' the 2nd team in the match
#'
#' @param plot
#' Plot=1 (static), Plot=2(interactive)
#'
#' @return none
#'
#' @references
#' \url{https://cricsheet.org/}\cr
#' \url{https://gigadom.in/}\cr
#' \url{https://github.com/tvganesh/yorkrData/}
#'
#' @author
#' Tinniam V Ganesh
#' @note
#' Maintainer: Tinniam V Ganesh \email{tvganesh.85@gmail.com}
#'
#' @examples
#' \dontrun{
#'
#' # Plot tne match worm plot
#' teamERAcrossOversOppnAllMatches(matches,'England',"Pakistan")
#' }
#' @seealso
#' \code{\link{getBatsmanDetails}}\cr
#' \code{\link{getBowlerWicketDetails}}\cr
#' \code{\link{batsmanDismissals}}\cr
#' \code{\link{getTeamBattingDetails}}\cr
#'
#' @export
#'
teamERAcrossOversOppnAllMatches <- function(matches,t1,t2,plot=1) {
team=ball=totalRuns=total=type=meanER=opposition=ER=str_extract=NULL
ggplotly=NULL
# Filter the performance of team1
a <-filter(matches,team==t1)
# Power play
a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9))
a2 <- select(a1,team,date,totalRuns)
a3 <- a2 %>% group_by(team,date) %>% summarise(total=sum(totalRuns),count=n())
a3$ER=a3$total/a3$count * 6
a4 = a3 %>% select(team,ER) %>% summarise(meanER=mean(ER))
a4$opposition=t2
a4$type="1-Power Play"
# Middle overs I
b1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9))
b2 <- select(b1,team,date,totalRuns)
b3 <- b2 %>% group_by(team,date) %>% summarise(total=sum(totalRuns),count=n())
b3$ER=b3$total/b3$count * 6
b4 = b3 %>% select(team,ER) %>% summarise(meanER=mean(ER))
b4$opposition=t2
b4$type="2-Middle Overs"
##Death overs
c1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0))
c2 <- select(c1,team,date,totalRuns)
c3 <- c2 %>% group_by(team,date) %>% summarise(total=sum(totalRuns),count=n())
c3$ER=c3$total/c3$count * 6
c4 = c3 %>% select(team,ER) %>% summarise(meanER=mean(ER))
c4$opposition=t2
c4$type="3-Death Overs"
####################
# Filter the performance of team2
a <-filter(matches,team==t2)
# Power play
a11 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9))
a21 <- select(a11,team,date,totalRuns)
a31 <- a21 %>% group_by(team,date) %>% summarise(total=sum(totalRuns),count=n())
a31$ER=a31$total/a31$count * 6
a41 = a31 %>% select(team,ER) %>% summarise(meanER=mean(ER))
a41$opposition=t1
a41$type="1-Power Play"
# Middle overs I
b11 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9))
b21 <- select(b11,team,date,totalRuns)
b31 <- b21 %>% group_by(team,date) %>% summarise(total=sum(totalRuns),count=n())
b31$ER=b31$total/b31$count * 6
b41 = b31 %>% select(team,ER) %>% summarise(meanER=mean(ER))
b41$opposition=t1
b41$type="2-Middle Overs"
##Death overs
c11 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0))
c21 <- select(c11,team,date,totalRuns)
c31 <- c21 %>% group_by(team,date) %>% summarise(total=sum(totalRuns),count=n())
c31$ER=c31$total/c31$count * 6
c41 = c31 %>% select(team,ER) %>% summarise(meanER=mean(ER))
c41$opposition=t1
c41$type="3-Death Overs"
m=rbind(a4,b4,c4,a41,b41,c41)
plot.title= paste("Wickets across 20 overs by ",t1, "and", t2, "in all matches", sep=" ")
# Plot both lines
if(plot ==1){ #ggplot2
ggplot(m,aes(x=type, y=meanER, fill=opposition)) +
geom_bar(stat="identity", position = "dodge") +
ggtitle(bquote(atop(.(plot.title),
atop(italic("Data source:http://cricsheet.org/"),""))))
}else { #ggplotly
g <- ggplot(m,aes(x=type, y=meanER, fill=opposition)) +
geom_bar(stat="identity", position = "dodge") +
ggtitle(plot.title)
ggplotly(g)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.