R/calculate_gefficiency.R

Defines functions calculate_gefficiency

Documented in calculate_gefficiency

#'@title Calculate G Efficiency
#'
#'@description Either calculates G-Efficiency by Monte Carlo sampling from the design space (ignoring constraints),
#'searching for the maximum point (slower but higher quality), or by using a user-specified candidate set
#'for the design space (fastest).
#'@return Normalized run matrix
#'@keywords internal
calculate_gefficiency = function(
  design,
  calculation_type = "random",
  randsearches = 10000,
  design_space_mm = NULL
) {
  if (!is.null(attr(design, "runmatrix"))) {
    run_matrix = attr(design, "runmatrix")
  } else {
    run_matrix = design
  }
  if (is.null(randsearches)) {
    randsearches = 10000
  }
  variables = all.vars(get_attribute(design, "model"))
  designmm = get_attribute(design, "model.matrix")
  modelentries = names(calculate_level_vector(
    run_matrix,
    get_attribute(design, "model"),
    FALSE
  ))
  model_entries_mul = gsub(":", "*", modelentries)
  model_entries_mul[1] = 1
  fulllist = list()
  factorvars = attr(design, "contrastslist")
  variables = variables[!variables %in% names(factorvars)]
  rand_vector = function(factorlist, model_entries_mul) {
    fulloutput = unlist(lapply(
      model_entries_mul,
      \(x) eval(parse(text = x), envir = factorlist)
    ))
    matrix(fulloutput, 1, length(fulloutput))
  }

  calculate_optimality_for_point = function(x, infval = FALSE) {
    for (i in seq_len(length(x))) {
      fulllist[[i]] = x[i]
    }
    names(fulllist) = variables
    for (i in seq_len(length(names(factorvars)))) {
      numberlevels = length(levels(run_matrix[[names(factorvars)[i]]]))
      fulllist[[names(factorvars)[i]]] = factorvars[[names(factorvars)[i]]](
        numberlevels
      )[sample(seq_len(numberlevels), 1), , drop = TRUE]
    }

    mc_mm = rand_vector(fulllist, model_entries_mul)
    if (any(x > 1) || any(x < -1)) {
      if (infval) {
        return(Inf)
      } else {
        return(10000)
      }
    }
    100 *
      (ncol(designmm)) /
      (nrow(designmm) *
        max(diag(mc_mm %*% solve(t(designmm) %*% designmm) %*% t(mc_mm))))
  }
  modelentries = names(calculate_level_vector(
    run_matrix,
    get_attribute(design, "model"),
    FALSE
  ))
  factorvars = attr(design, "contrastslist")
  variables = all.vars(get_attribute(design, "model"))
  variables = variables[!variables %in% names(factorvars)]
  if (calculation_type == "random") {
    vals = list()
    lowest = 100
    for (i in seq_len(randsearches)) {
      vals[[i]] = calculate_optimality_for_point(
        2 * runif(length(variables)) - 1
      )
      if (vals[[i]] < lowest) {
        lowest = vals[[i]]
      }
    }
    return(min(unlist(vals)))
  }

  if (calculation_type == "optim") {
    vals = list()
    lowest = 100
    for (i in seq_len(randsearches)) {
      vals[[i]] = optim(
        2 * runif(length(variables)) - 1,
        calculate_optimality_for_point,
        method = "SANN"
      )$value
      if (vals[[i]] < lowest) {
        lowest = vals[[i]]
      }
    }
    return(min(unlist(vals)))
  }
  if (calculation_type == "custom" && !is.null(design_space_mm)) {
    return(GEfficiency(designmm, design_space_mm))
  }
}
tylermorganwall/skpr documentation built on April 13, 2025, 5:35 p.m.