LINKER_run: GRN inference via selected model.

View source: R/linker_runlinker.R

LINKER_runR Documentation

GRN inference via selected model.

Description

Gene Regulatory Network inference via model selection. Consists of two phases, LINKER_runPhase1() and LINKER_runPhase2(). Help them for more information.

Usage

LINKER_run(
  TraReObj,
  link_mode = c("VBSR", "LASSOmin", "LASSO1se", "LM"),
  graph_mode = c("VBSR", "LASSOmin", "LASSO1se", "LM"),
  module_rep = "MEAN",
  NrModules = 100,
  corrClustNrIter = 100,
  Nr_bootstraps = 10,
  FDR = 0.05,
  Lambda = 5,
  train_size = 0.8,
  onlymods = FALSE,
  only_train = FALSE
)

Arguments

TraReObj

TraReObj containing preprocessed input matrix, linker_preprocessing output.

link_mode

Chosen method(s) to link module eigengenes to regulators. The available options are 'VBSR', 'LASSOmin', 'LASSO1se' and 'LM'. By default, all methods are chosen.

graph_mode

Chosen method(s) to generate the edges in the bipartite graph. The available options are 'VBSR', 'LASSOmin', 'LASSO1se' and 'LM'. By default, all methods are chosen.

module_rep

Method selected for use. Default set to MEAN.

NrModules

Number of modules that are a priori to be found (note that the final number of modules discovered may differ from this value). By default, 100 modules.

corrClustNrIter

output from preparedata(). By default, 100.

Nr_bootstraps

Number of bootstrap of Phase I. By default, 10.

FDR

The False Discovery Rate correction used for the modules and graphs GRN uncovering. By default, 0.05.

Lambda

Lambda variable for Lasso models.

train_size

Fraction of samples selected for the train samples. Default: 0.8.

onlymods

Whether to infer only modules or modules and graphs. Default: FALSE

only_train

whether to use only training samples within LINKER run. Default: FALSE

Value

List containing the GRN raw results, GRN modules and GRN graphs.

Examples


  ## For this example, we are going to load a example matrix
  lognorm_est_counts_p <- paste0(system.file('extdata', package='TraRe'),
                                 '/expression_rewiring_example.txt')
  lognorm_est_counts <- as.matrix(read.delim(lognorm_est_counts_p,
                                         header=TRUE,row.names=1))
  # dim(lognorm_est_counts) # 1149   35                                      

  ## Load gene info, its an array of regulators' names.
  gene_info_p <- paste0(system.file('extdata',package='TraRe'),
                                '/geneinfo_rewiring_example.txt')
  gene_info <- read.delim(gene_info_p,header=TRUE)
  regulators <- gene_info[gene_info[,'regulator'] == 1,'uniq_isos']

  TraReObj <- trare_preprocessing(data_matrix = lognorm_est_counts,
                                     geneinfo = regulators, verbose = FALSE)

  linker_output <- LINKER_run(TraReObj = TraReObj, module_rep = "LINKER",
                           link_mode='VBSR', graph_mode='VBSR',
                           NrModules=10, Nr_bootstraps=1,
                           corrClustNrIter=100)


ubioinformat/TraRe documentation built on March 10, 2024, 1:11 a.m.