View source: R/linker_runphaseone.R
LINKER_runPhase1 | R Documentation |
Run first phase of the linker method where K modules of similarly expressed target genes and
relate them to a linear combination of very few regulators, according to the selected model. LINKER_init()
evaluate kmeans on a train set to generate a initial set of clusters containing drivers and target genes.
LINKER_ReassignGenesToClusters()
reassigning genes based on closed match to new regulatory programs.
This functions are run inside the LINKER_run
function, so it is not recommended to run it on its own.
LINKER_corrClust()
go through two steps within a loop, learning regulatory program of modules and reassigning
genes. LINKER_extract_modules()
extracts all the modules, genes and relevant information. LINKER_EvaluateTestSet()
fits the selected model with the test data. LINKER_LearnRegulatoryPrograms()
learns the regulatory program of the modules.
LINKER_runPhase1(
lognorm_est_counts,
target_filtered_idx,
regulator_filtered_idx,
nassay = 1,
regulator = "regulator",
NrModules,
Lambda = 5,
alpha = 1 - 1e-06,
pmax = 10,
train_size = 0.8,
mode = "VBSR",
used_method = "MEAN",
corrClustNrIter = 100,
Nr_bootstraps = 1,
FDR = 0.05,
only_train = FALSE
)
LINKER_init(
MA_matrix_Var,
RegulatorData,
NrModules,
corrClustNrIter = 21,
Parameters,
FDR
)
LINKER_ReassignGenesToClusters(Data, RegulatorData, Beta, Clusters)
LINKER_corrClust(LINKERinit)
LINKER_extract_modules(results)
LINKER_EvaluateTestSet(
LINKERresults,
MA_Data_TestSet,
RegulatorData_TestSet,
used_method = "MEAN"
)
LINKER_LearnRegulatoryPrograms(
Data,
Clusters,
RegulatorData,
Lambda,
alpha,
pmax,
mode,
used_method = "MEAN",
FDR
)
lognorm_est_counts |
Matrix of log-normalized estimated counts of the gene expression data (Nr Genes x Nr samples) |
target_filtered_idx |
Index array of the target genes on the lognorm_est_counts matrix if SummarizedExperiment object is not provided. |
regulator_filtered_idx |
Index array of the regulatory genes on the lognorm_est_counts matrix if SummarizedExperiment object is not provided. |
nassay |
if SummarizedExperiment object is passed as input to lognorm_est_counts, name of the assay containing the desired matrix. Default: 1 (first item in assay's list). |
regulator |
if SummarizedExperiment object is passed as input to lognorm_est_counts, name of the rowData() variable to build target_filtered_idx and regulator_filtered_idx. This variable must be one for driver genes and zero for target genes. Default: 'regulator' |
NrModules |
Number of modules that are a priori to be found (note that the final number of modules discovered may differ from this value). By default, 100 modules. |
Lambda |
Lambda variable for Lasso models. |
alpha |
Alpha variable for Lasso models. |
pmax |
Maximum numbers of regulators that we want. |
train_size |
Fraction of samples selected for the train samples. Default: 0.8. |
mode |
Chosen method(s) to link module eigengenes to regulators. The available options are 'VBSR', 'LASSOmin', 'LASSO1se', 'LASSOparam' and 'LM'. Default set to 'VBSR' |
used_method |
Method selected for use. Default set to MEAN. |
corrClustNrIter |
Number of iteration for the phase I part of the method. |
Nr_bootstraps |
Number of bootstrap of Phase I. By default, 1. |
FDR |
The False Discovery Rate correction used for the modules and graphs GRN uncovering. By default, 0.05. |
only_train |
whether to use only training samples within LINKER run. Default: FALSE |
MA_matrix_Var |
Matrix of log-normalized estimated counts of the gene expression data, centered and scaled, containing only the train samples. |
RegulatorData |
Expression matrix containing only the regulators of the train samples. |
Parameters |
List of parameters containig lambda, pmax, alpha, mode and used method. |
Data |
Matrix of log-normalized estimated counts of the gene expression data, centered and scaled, containing only the train samples. |
Beta |
Coefficient on which the decision of reassigning genes is based. |
Clusters |
Clusters generated from the linkerinit function. |
LINKERinit |
Initialization object obtained from |
results |
Matrix of log-normalized estimated counts of the gene expression data (Nr Genes x Nr samples). |
LINKERresults |
List containing the number of clusters, regulatoryprogram, name of regulators and all genes and module membership. |
MA_Data_TestSet |
Matrix of log-normalized estimated counts of the gene expression data, centered and scaled, containing only the test samples. |
RegulatorData_TestSet |
Expression matrix containing only the regulators of the test samples. |
list object containing the modules generated with the selected parameters and the stats associated to them.
## This example is very similar to the `LINKER_run()` function.
## Again, we are going to load the expression matrix dataset
lognorm_est_counts_p <- paste0(system.file('extdata', package='TraRe'),
'/expression_rewiring_example.txt')
lognorm_est_counts <- as.matrix(read.delim(lognorm_est_counts_p,
header=TRUE,row.names=1))
## Load gene info, its an array of regulators' names.
gene_info_p <- paste0(system.file('extdata',package='TraRe'),
'/geneinfo_rewiring_example.txt')
gene_info <- read.delim(gene_info_p,header=TRUE)
regulators <- gene_info[gene_info[,'regulator'] == 1,'uniq_isos']
regulator_filtered_idx <- which(rownames(lognorm_est_counts)%in%regulators)
target_filtered_idx <- which(!rownames(lognorm_est_counts)%in%regulators)
## We recommend to use the default values of the function.
## For the sake of time, we will select faster (and worse) ones.
linkerphase1 <- TraRe::LINKER_runPhase1(lognorm_est_counts,
target_filtered_idx=target_filtered_idx,
regulator_filtered_idx=regulator_filtered_idx,
NrModules=10,mode='LASSOmin',used_method = "MEAN",
corrClustNrIter=10,Nr_bootstraps=1)
# saveRDS(linkerphase1,paste0(system.file('extdata',package='TraRe'),
# '/linker_phase_one.example.rds'))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.