View source: R/plot_functions.R
plot_igraph | R Documentation |
Collection of functions for generating graphs layouts to plot GRN obtained from NET_run()
method.
return_layout()
generates a layout from the graph object returned by NET_run()
and return_layout_phenotype()
plots targets according to the t-statistic from the differential expression analysis of the desired phenotype.
plot_igraph()
takes in the igraph object and generated layout and generates plot.
plot_igraph(
mygraph = NULL,
mytitle = "",
titlecol = "black",
mylayout = NULL,
includelegend = FALSE
)
return_layout(regs = NULL, targets = NULL, namehash = NULL)
return_layout_phenotype(
regs = NULL,
targets = NULL,
varfile = NULL,
namehash = NULL
)
orderGraphWeights(graph, edgelist)
heatmapplot(
heatm,
plotname = "",
myzlim = c(min(heatm), max(heatm)),
cvec = c("red", "white", "blue"),
showRows = TRUE
)
plot_expression_row(
mymat = NULL,
rowdesc = "Regulators",
plotheight = 200,
myshowrows = TRUE,
samps2pheno = NULL,
phenostrs = c("nonrespond", "responder"),
htmlfile = "./",
imgdir = "imgs/",
modnum = 1,
plotwidth = 800,
mycvec = c("darkorange", "gray100", "darkblue"),
plotzlim = c(-10, 10)
)
plot_correlation_row(
cormats = NULL,
rowdesc = "regulators",
xnames = NULL,
ynames = NULL,
plotheight = 200,
myshowrows = TRUE,
htmlfile = "./",
imgdir = "imgs/",
modnum = 1,
plotwidth = 200,
mycvec = c("darkred", "gray100", "darkgreen"),
plotzlim = c(-1, 1),
plottitle = NULL
)
plot_gene_pair_scatter(
pname,
myx,
myy,
xgenename,
ygenename,
mylabels,
alltext = NULL,
plotdir = ""
)
plot_gene_pair_scatter_by_class(
plotdir,
pname,
myx,
myy,
xgenename,
ygenename,
mylabels,
lab1text,
lab2text,
alltext
)
mygraph |
igraph object returned from |
mytitle |
Desired tittle. |
titlecol |
Color for the tittle. |
mylayout |
desired layout. |
includelegend |
whether to include legend, boolean. (Default: FALSE) |
regs |
regulators name list |
targets |
targets name list |
namehash |
list containing the drivers genes as names and transcripts as values. If only genes are required, leave it empty. |
varfile |
two column file containing, gene names as rows, t-statistic from the differential expression analysis of the desired phenotype column and a boolean variable for regulator (1) - no regulator (0) column. |
graph |
igraph object |
edgelist |
list containing the edges of the igraph object. |
heatm |
input matrix for plot. |
plotname |
name of the plot. |
myzlim |
the range of z values for which colors should be plotted. |
cvec |
vector of colors for the palette of the plot. |
showRows |
boolean specifying the option of showing row names. |
mymat |
input matrix for plot. |
rowdesc |
name uses to specify regulator. |
plotheight |
height of the plot. |
myshowrows |
boolean specifying the option of showing row names. |
samps2pheno |
matrix of sample to phenotype. |
phenostrs |
strings uses distinguish for phenotypes. |
htmlfile |
directory to html files. |
imgdir |
directory for image. |
modnum |
the number of supermodule. |
plotwidth |
width of the plot. |
mycvec |
vector of colors for the palette of the plot. |
plotzlim |
the range of z values for which colors should be plotted. |
cormats |
input correlation matrix for plot. |
xnames |
names for the x axis. |
ynames |
names for the x axis. |
plottitle |
the title of the plot. |
pname |
name for the plot. |
myx |
the coordinates of points of the first gene. |
myy |
the coordinates of points of the second gene. |
xgenename |
the names of the first gene. |
ygenename |
the names of the second gene. |
mylabels |
integer class labels. |
alltext |
text label for the plot. |
plotdir |
directory for the plot. |
lab1text |
text label of a class. |
lab2text |
text label of the other class. |
plot of the desired single GRN using a specific layout.
## Assume we have run the rewiring method and the `NET_run()` method to generate the
## igraph object. We are going to generate and plot both layouts for the example.
## We are going to generate all the files we need except for the igraph object, which
## is included as an example file in this package.
## We load the igraph object that we generated from the `NET_run()` example.
## Note: the igraph object is inside the list `NET_run()` generates.
graph <- readRDS(paste0(system.file('extdata',package='TraRe'),
'/graph_netrun_example.rds'))$graphs$VBSR
## We first generate the normal layout for the plot.
## We need the drivers and target names.
drivers <- readRDS(paste0(system.file('extdata',package='TraRe'),'/tfs_linker_example.rds'))
drivers_n <- rownames(drivers)
targets <- readRDS(paste0(system.file('extdata',package='TraRe'),'/targets_linker_example.rds'))
targets_n <- rownames(targets)
## As for this example we are working at gene level (we dont have transcripts inside genes),
## we will generate a dictionary with genes as keys and values (see param `namehash`)
normal_layout <- return_layout(drivers_n,targets_n)
## We now generate the phenotype layout and the `varfile` we ned for this layout.
## (I leave here a way to generate) We need to separate our expression matrix by
## a binary phenotype, for this case, i will consider the first 40 samples are
## responding to a treatment (R) and the rest not (NR).
gnames <- c(drivers_n,targets_n)
expmat <-rbind(drivers,targets)
phenotype <- utils::read.delim(paste0(system.file('extdata',package='TraRe'),
'/phenotype_rewiring_example.txt'))
expmat_R <- expmat[,phenotype$Class=='R']
expmat_NR <- expmat[,phenotype$Class=='NR']
varfile <- t(as.matrix(sapply(gnames,
function(x) c(stats::t.test(expmat_R[x,],expmat_NR[x,])$statistic,
if(x%in%drivers_n) 1 else 0))))
colnames(varfile)<-c('t-stat','is-regulator')
phenotype_layout <- return_layout_phenotype(drivers_n,targets_n,varfile)
plot_igraph(graph,mytitle='Normal Layout',titlecol='black',mylayout=normal_layout)
plot_igraph(graph,mytitle='Phenotype Layout',titlecol='black',mylayout=phenotype_layout)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.