## code to prepare `gasdata` dataset goes here
#Dates
dates <- seq.Date(as.Date("2021-01-01"),
by = "1 months",
length.out = 12)
#A factor to mimic a typical annual cycle beginning with january
date_factor <- c(0.1,
.15,
.2,
0.45,
0.6,
0.7,
1.0,
0.8,
0.6,
0.4,
0.2,
0.15)
#two example sites
sites <- c("site_a","site_b")
#depth of gasdata measurement
depths_a <- c(5,0,-10,-20,-100)
depths_b <- c(7,0,-10,-20,-100)
#replication per depth
reps_a <- c(1,3,3,3,3)
reps_b <- c(1,3,3,3,3)
#which gas this should represent
gas <- "CO2"
#mean concentration per depth relative to atmosphere
mean_conc_a <- c(1,4.2,8,10,17)
mean_conc_b <- c(1,4.5,7,10,16)
#a standard deviation to mimic natural data in ppm
sd_conc_a <- c(20,40,60,100,150)
sd_conc_b <- c(20,40,60,100,150)
#create dataframe
gasdata <- data.frame(site = rep(sites,each = 5),
depth = c(depths_a,depths_b),
reps = c(reps_a,reps_b),
mean_conc = c(mean_conc_a,mean_conc_b),
sd_conc = c(sd_conc_a,sd_conc_b))
gasdata <- lapply(seq_along(dates), function(i){
gasdata %>%
dplyr::mutate(Date = dates[i],
date_factor = date_factor[i])
}) %>%
dplyr::bind_rows()
# expand data per replication and mimic natural data by
# calling rnorm
set.seed(42)
gasdata <-
gasdata %>%
dplyr::mutate(mean_conc = date_factor*(mean_conc-1)*420+420,
sd_conc = date_factor*sd_conc) %>%
dplyr::rowwise() %>%
dplyr::summarise(site = rep(site,reps),
Date = rep(Date,reps),
depth = rep(depth,reps),
x_ppm = rnorm(reps,
mean_conc,
sd_conc)) %>%
dplyr::mutate(gas = !!gas)
#gasdata %>%
# ggplot(aes(y=x_ppm,
# x=depth,
# col = season(Date)))+
# geom_point()+
# stat_smooth(geom = "line",
# method = "lm",
# formula = y~bs(x,knots = c(0,-10,-20),degree = 1))+
# facet_wrap(~site)+
# coord_flip()
#
#gasdata %>%
# ggplot(aes(x=Date,y=x_ppm,col = site))+
# stat_summary(geom = "line")
usethis::use_data(gasdata,
overwrite = T)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.