Description Usage Arguments Value References Examples
View source: R/p_logreg_xerrors2.R
Assumes constant-scale Gamma model for exposure given covariates, and multiplicative lognormal processing errors and measurement errors acting on the poolwise mean exposure. Manuscript fully describing the approach is under review.
1 2 3 4 5 6 7 8 9  | p_logreg_xerrors2(g = NULL, y, xtilde, c = NULL,
  errors = "processing", nondiff_pe = TRUE, nondiff_me = TRUE,
  constant_pe = TRUE, prev = NULL, samp_y1y0 = NULL,
  estimate_var = TRUE, start_nonvar_var = c(0.01, 1),
  lower_nonvar_var = c(-Inf, 1e-04), upper_nonvar_var = c(Inf, Inf),
  jitter_start = 0.01, hcubature_list = list(tol = 1e-08),
  nlminb_list = list(control = list(trace = 1, eval.max = 500, iter.max =
  500)), hessian_list = list(method.args = list(r = 4)),
  nlminb_object = NULL)
 | 
g | 
 Numeric vector with pool sizes, i.e. number of members in each pool.  | 
y | 
 Numeric vector with poolwise Y values, coded 0 if all members are controls and 1 if all members are cases.  | 
xtilde | 
 Numeric vector (or list of numeric vectors, if some pools have replicates) with Xtilde values.  | 
c | 
 List where each element is a numeric matrix containing the C values for members of a particular pool (1 row for each member).  | 
errors | 
 Character string specifying the errors that X is subject to.
Choices are   | 
nondiff_pe | 
 Logical value for whether to assume the processing error variance is non-differential, i.e. the same in case pools and control pools.  | 
nondiff_me | 
 Logical value for whether to assume the measurement error variance is non-differential, i.e. the same in case pools and control pools.  | 
constant_pe | 
 Logical value for whether to assume the processing error
variance is constant with pool size. If   | 
prev | 
 Numeric value specifying disease prevalence, allowing
for valid estimation of the intercept with case-control sampling. Can specify
  | 
samp_y1y0 | 
 Numeric vector of length 2 specifying sampling probabilities
for cases and controls, allowing for valid estimation of the intercept with
case-control sampling. Can specify   | 
estimate_var | 
 Logical value for whether to return variance-covariance matrix for parameter estimates.  | 
start_nonvar_var | 
 Numeric vector of length 2 specifying starting value for non-variance terms and variance terms, respectively.  | 
lower_nonvar_var | 
 Numeric vector of length 2 specifying lower bound for non-variance terms and variance terms, respectively.  | 
upper_nonvar_var | 
 Numeric vector of length 2 specifying upper bound for non-variance terms and variance terms, respectively.  | 
jitter_start | 
 Numeric value specifying standard deviation for mean-0
normal jitters to add to starting values for a second try at maximizing the
log-likelihood, should the initial call to   | 
hcubature_list | 
 List of arguments to pass to
  | 
nlminb_list | 
 List of arguments to pass to   | 
hessian_list | 
 List of arguments to pass to
  | 
nlminb_object | 
 Object returned from   | 
List containing:
Numeric vector of parameter estimates.
 Variance-covariance matrix (if estimate_var = TRUE).
 Returned nlminb object from maximizing the
log-likelihood function.
Akaike information criterion (AIC).
Mitchell, E.M, Lyles, R.H., and Schisterman, E.F. (2015) "Positing, fitting, and selecting regression models for pooled biomarker data." Stat. Med 34(17): 2544–2558.
Schisterman, E.F., Vexler, A., Mumford, S.L. and Perkins, N.J. (2010) "Hybrid pooled-unpooled design for cost-efficient measurement of biomarkers." Stat. Med. 29(5): 597–613.
Weinberg, C.R. and Umbach, D.M. (1999) "Using pooled exposure assessment to improve efficiency in case-control studies." Biometrics 55: 718–726.
Weinberg, C.R. and Umbach, D.M. (2014) "Correction to 'Using pooled exposure assessment to improve efficiency in case-control studies' by Clarice R. Weinberg and David M. Umbach; 55, 718–726, September 1999." Biometrics 70: 1061.
Whitcomb, B.W., Perkins, N.J., Zhang, Z., Ye, A., and Lyles, R. H. (2012) "Assessment of skewed exposure in case-control studies with pooling." Stat. Med. 31: 2461–2472.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29  | # Load dataset with (g, Y, Xtilde, C) values for 248 pools and list of C
# values for members of each pool. Xtilde values are affected by processing
# error.
data(pdat2)
dat <- pdat2$dat
c.list <- pdat2$c.list
# Estimate log-OR for X and Y adjusted for C, ignoring processing error
fit1 <- p_logreg_xerrors2(
  g = dat$g,
  y = dat$y,
  xtilde = dat$xtilde,
  c = c.list,
  errors = "neither"
)
fit1$theta.hat
# Repeat, but accounting for processing error.
## Not run: 
fit2 <- p_logreg_xerrors2(
  g = dat$g,
  y = dat$y,
  xtilde = dat$xtilde,
  c = c.list,
  errors = "processing"
)
fit2$theta.hat
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.