## Tests of predict_gaussian_2D()
data(gaussplot_sample_data)
samp_dat <-
gaussplot_sample_data[,1:3]
fake_obj1 <-
list(model = lm(samp_dat$response ~ samp_dat$X_values))
fake_obj2 <-
list(coefs = coef(lm(samp_dat$response ~ samp_dat$X_values)))
fake_obj3 <-
list(
coefs = coef(lm(samp_dat$response ~ samp_dat$X_values)),
model = lm(samp_dat$response ~ samp_dat$X_values),
fit_method = "steve"
)
test_that("predict_gaussian_2D() fails when nonsense is supplied", {
expect_error(predict_gaussian_2D("steve"))
expect_error(predict_gaussian_2D(c("a", "b", "c")))
expect_error(predict_gaussian_2D())
expect_error(predict_gaussian_2D(samp_dat))
expect_error(predict_gaussian_2D(fake_obj1))
expect_error(predict_gaussian_2D(fake_obj2))
expect_error(predict_gaussian_2D(fake_obj3))
expect_error(predict_gaussian_2D(data.frame(rnorm(100))))
})
gauss_fit_ue <-
fit_gaussian_2D(samp_dat,
method = "elliptical",
constrain_orientation = "unconstrained")
gauss_fit_ce <-
fit_gaussian_2D(samp_dat,
method = "elliptical",
constrain_orientation = 0)
gauss_fit_uel <-
fit_gaussian_2D(samp_dat,
method = "elliptical_log",
constrain_orientation = "unconstrained")
gauss_fit_cel <-
fit_gaussian_2D(samp_dat,
method = "elliptical_log",
constrain_orientation = -1)
gauss_fit_cir <-
fit_gaussian_2D(samp_dat,
method = "circular")
## Generate a grid of x- and y- values on which to predict
grid <-
expand.grid(X_values = seq(from = -5, to = 0, by = 0.1),
Y_values = seq(from = -1, to = 4, by = 0.1))
bad_grid1 <-
data.frame(
X_values = rnorm(100),
Y_values = "a"
)
bad_grid2 <-
data.frame(
X_values = "a",
Y_values = rnorm(100)
)
## Predict the values using predict_gaussian_2D
gauss_data_ue <-
predict_gaussian_2D(
fit_object = gauss_fit_ue,
X_values = grid$X_values,
Y_values = grid$Y_values,
)
gauss_data_ce <-
predict_gaussian_2D(
fit_object = gauss_fit_ce,
X_values = grid$X_values,
Y_values = grid$Y_values,
)
gauss_data_uel <-
predict_gaussian_2D(
fit_object = gauss_fit_uel,
X_values = grid$X_values,
Y_values = grid$Y_values,
)
gauss_data_cel <-
predict_gaussian_2D(
fit_object = gauss_fit_cel,
X_values = grid$X_values,
Y_values = grid$Y_values,
)
gauss_data_cir <-
predict_gaussian_2D(
fit_object = gauss_fit_cir,
X_values = grid$X_values,
Y_values = grid$Y_values,
)
test_that("predict_gaussian_2D() fails when bad grid is supplied", {
expect_error(predict_gaussian_2D(gauss_fit_ue))
expect_error(predict_gaussian_2D(gauss_fit_ue,
X_values = bad_grid1$X_values,
Y_values = bad_grid1$Y_values))
expect_error(predict_gaussian_2D(gauss_fit_ue,
X_values = bad_grid2$X_values,
Y_values = bad_grid2$Y_values))
expect_error(predict_gaussian_2D(gauss_fit_ue,
X_values = grid$X_values,
Y_values = 1:3))
})
test_that("each output has correct dimensions", {
expect_equal(dim(gauss_data_ue), c(2601, 3))
expect_equal(dim(gauss_data_ce), c(2601, 3))
expect_equal(dim(gauss_data_uel), c(2601, 3))
expect_equal(dim(gauss_data_cel), c(2601, 3))
expect_equal(dim(gauss_data_cir), c(2601, 3))
})
test_that("column names are correct", {
expect_equal(colnames(gauss_data_ue),
c("X_values", "Y_values", "predicted_values"))
expect_equal(colnames(gauss_data_ce),
c("X_values", "Y_values", "predicted_values"))
expect_equal(colnames(gauss_data_uel),
c("X_values", "Y_values", "predicted_values"))
expect_equal(colnames(gauss_data_cel),
c("X_values", "Y_values", "predicted_values"))
expect_equal(colnames(gauss_data_cir),
c("X_values", "Y_values", "predicted_values"))
})
test_that("predicted_values are what we expect", {
expect_equal(gauss_data_ue$predicted_values[1], 4.946876, tolerance = 1e-5)
expect_equal(gauss_data_ce$predicted_values[1], 1.509221, tolerance = 1e-5)
expect_equal(gauss_data_uel$predicted_values[1], 5.033768, tolerance = 1e-5)
expect_equal(gauss_data_cel$predicted_values[1], 0.9435862, tolerance = 1e-5)
expect_equal(gauss_data_cir$predicted_values[1], 0.943607, tolerance = 1e-5)
})
gauss_fit_ue_bad1 <-
fit_gaussian_2D(samp_dat,
method = "elliptical",
constrain_orientation = "unconstrained")
names(gauss_fit_ue_bad1$coefs) <- c("a", 5, 6, "b", "2", 6, "last")
gauss_fit_ue_bad2 <- gauss_fit_ue_bad1
gauss_fit_ue_bad2$coefs <- c(4, 2, 4)
gauss_fit_ce_bad1 <-
fit_gaussian_2D(samp_dat,
method = "elliptical",
constrain_orientation = 0)
names(gauss_fit_ce_bad1$coefs) <- c("a", 5, 6, "b", "2", 6, "last")
gauss_fit_ce_bad2 <- gauss_fit_ce_bad1
gauss_fit_ce_bad2$coefs <- c(4, 2, 4)
gauss_fit_uel_bad1 <-
fit_gaussian_2D(samp_dat,
method = "elliptical_log",
constrain_orientation = "unconstrained")
names(gauss_fit_uel_bad1$coefs) <- c("a", 5, 6, "b", "2", "last")
gauss_fit_uel_bad2 <- gauss_fit_uel_bad1
gauss_fit_uel_bad2$coefs <- c(4, 2, 4)
gauss_fit_cel_bad1 <-
fit_gaussian_2D(samp_dat,
method = "elliptical_log",
constrain_orientation = -1)
names(gauss_fit_cel_bad1$coefs) <- c("a", 5, 6, "b", "2", "last")
gauss_fit_cel_bad2 <- gauss_fit_cel_bad1
gauss_fit_cel_bad2$coefs <- c(4, 2, 4)
gauss_fit_cir_bad1 <-
fit_gaussian_2D(samp_dat,
method = "circular")
names(gauss_fit_cir_bad1$coefs) <- c("a", 5, 6, "b", "last")
gauss_fit_cir_bad2 <- gauss_fit_cir_bad1
gauss_fit_cir_bad2$coefs <- c(4, 2, 4)
test_that("predict_gaussian_2D() fails when models are misspecified", {
expect_error(predict_gaussian_2D(gauss_fit_ue_bad1,
X_values = grid$X_values,
Y_values = grid$Y_values))
expect_error(predict_gaussian_2D(gauss_fit_ue_bad2,
X_values = grid$X_values,
Y_values = grid$Y_values))
expect_error(predict_gaussian_2D(gauss_fit_ce_bad1,
X_values = grid$X_values,
Y_values = grid$Y_values))
expect_error(predict_gaussian_2D(gauss_fit_ce_bad2,
X_values = grid$X_values,
Y_values = grid$Y_values))
expect_error(predict_gaussian_2D(gauss_fit_uel_bad1,
X_values = grid$X_values,
Y_values = grid$Y_values))
expect_error(predict_gaussian_2D(gauss_fit_uel_bad2,
X_values = grid$X_values,
Y_values = grid$Y_values))
expect_error(predict_gaussian_2D(gauss_fit_cel_bad1,
X_values = grid$X_values,
Y_values = grid$Y_values))
expect_error(predict_gaussian_2D(gauss_fit_cel_bad2,
X_values = grid$X_values,
Y_values = grid$Y_values))
expect_error(predict_gaussian_2D(gauss_fit_cir_bad1,
X_values = grid$X_values,
Y_values = grid$Y_values))
expect_error(predict_gaussian_2D(gauss_fit_cir_bad2,
X_values = grid$X_values,
Y_values = grid$Y_values))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.