load("/Users/vcerqueira/Desktop/VEST_PT2_LC_TK33000_ALL.rdata")
source("experiments/analysis-src.r")
library(hrbrthemes)
library(GGally)
library(viridis)
fresults <- vector("list", length(FINALRESULTS))
for (i in 1:length(FINALRESULTS)) {
#i<-2
cat(i, "\n")
x <- FINALRESULTS[[i]]
LCresults <- vector("list", length(x))
for (j in 1:length(x)) {
#j<-1
#cat("j ", j, "\n")
iter_results <- x[[j]]
#names(iter_results$yhat)
iter_results$yhat <-
iter_results$yhat[c(1,4,6,7,8)]
names(iter_results$yhat) <-
c( "AR", "AR+VEST","ARIMA","ETS","TBATS")
frq <- iter_results$feats_model@keys$freq
if (frq > NROW(iter_results$y)) {
frq <- 1
}
err <-
sapply(iter_results$yhat,
function(z) {
#cat("-")
err_by_h_mase(
yhat = z,
y = as.matrix(iter_results$y),
y_tr = iter_results$y_tr,
frq = frq
)$L_np
})
LCresults[[j]] <- err
}
LCresults <- do.call(rbind, LCresults)
fresults[[i]] <- LCresults
}
colnames(fresults[[1]])
ranksOneStep <- #fresults
lapply(fresults,
function(x) {
t(apply(x,1,rank))
})
library(tsensembler)
avgRankOS <- apply(simplify2array(ranksOneStep), 1:2, mean, na.rm=TRUE)
avgRankOS <- as.data.frame(avgRankOS)
avgRankOS_Sm <- roll_mean_matrix(avgRankOS, 10)
#plot_learning_curve(avgRankOS_Sm)
avg <- avgRankOS_Sm
avg <- as.data.frame(t(avg))
avg$Method <- rownames(avg)
rownames(avg) <- NULL
colnames(avg)[1:30] <- as.character(seq(from=100,to=3000, by=100))
data<-avg
#std,robust,uniminmax,globalminmax,center,centerObs
ggparcoord(data,
columns = 1:30,
groupColumn = 31, #order = "anyClass",
showPoints = TRUE,
scale = "globalminmax",
#title = "Parallel Coordinate Plot for the Iris Data",
alphaLines = 0.3
) +
scale_color_viridis(discrete=TRUE) +
theme_minimal() +
theme(
plot.title = element_text(size=10),
legend.position = "top", axis.text.x = element_text(angle=30)
) +
xlab("Sample Size") +
ylab("Average Rank")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.