library(devtools)
# install_github("vegarsti/fhtboost")
library(foreach)
library(doParallel)
library(fhtboost)
load_all()
oberthur_filename <- 'preproc_Oberthur_data.Rdata'
load(oberthur_filename)
has_age_observations <- which(!is.na(clinicalData[, 4]))
X <- as.matrix(scale(molecularData[has_age_observations, ]))
Z <- as.matrix(scale(clinicalData[has_age_observations, c(3, 4)]))
times <- clinicalData$time[has_age_observations]
delta <- clinicalData$status[has_age_observations]
rm(molecularData, clinicalData)
# OPTIONS
K_fold_repetitions <- 10
K <- 5
boost_intercepts_continually <- FALSE
directory <- "oberthur/"
boosting_types <- c("clinical", "genetic", "both")
# RUN ALL IN ONE PROGRAM
for (i in 1:3) {
boosting_type <- boosting_types[i]
# Set up parallel things
no_cores <- detectCores() - 1
registerDoParallel(cores=no_cores)
cl <- makeCluster(no_cores)
seeds <- 1:100
foreach(seed=seeds) %dopar% {
set.seed(seed)
seed_string <- formatC(seed, width=3, flag="0")
# Divide into test and train. test approx 1/3
num_folds <- 3
folds <- create_folds_stratified(delta, num_folds)
test_indices <- sort(folds[[1]])
train_indices <- sort(c(folds[[2]], folds[[3]]))
## TRAIN
ones_train <- rep(1, length(train_indices))
times_train <- times[train_indices]
delta_train <- delta[train_indices]
X_train_rest <- X[train_indices, ]
X_train <- as.matrix(cbind(ones_train, X_train_rest))
Z_train_rest <- Z[train_indices, ]
Z_train <- as.matrix(cbind(ones_train, Z_train_rest))
## TEST
ones_test <- rep(1, length(test_indices))
times_test <- times[test_indices]
delta_test <- delta[test_indices]
X_test_rest <- X[test_indices, ]
X_test <- as.matrix(cbind(ones_test, X_test_rest))
Z_test_rest <- Z[test_indices, ]
Z_test <- as.matrix(cbind(ones_test, Z_test_rest))
# Both
if (boosting_type == "both") {
# M <- m_stop <- 100 # ??
# CV_result <- run_CV(
# M, K_fold_repetitions, K, X_train, Z_train, times_train, delta_train,
# boost_intercepts_continually=boost_intercepts_continually
# )
#
# ### WRITE CV RESULT TO FILE
# full_filename <- paste0(directory, seed_string, "_", boosting_type, "loglik.csv")
# write.csv(CV_result$CV_errors_K_loglik, file=full_filename, row.names=FALSE)
# full_filename <- paste0(directory, seed_string, "_", boosting_type, "deviance.csv")
# write.csv(CV_result$CV_errors_K_deviance, file=full_filename, row.names=FALSE)
## READ CV RESULT FROM FILE
full_filename <- paste0(directory, seed_string, '_', boosting_type, "_", "loglik.csv")
logliks <- read.csv(full_filename)
full_filename <- paste0(directory, seed_string, '_', boosting_type, "_", "deviance.csv")
deviances <- read.csv(full_filename)
### POST PROCESSING AND PLOTTING
logliks <- CV_result$CV_errors_K_loglik
ylims <- c(min(apply(logliks, 2, min)), max(apply(logliks, 2, max)))
m_stop_from_CV <- which.min(rowMeans(logliks))
#m_stop_from_CV <- which.max(rowMeans(deviances))
full_filename <- paste0(directory, seed_string, boosting_type, "_", "loglik.pdf")
pdf(full_filename, width=12, height=6)
plot(rowMeans(logliks), typ='l', ylim=ylims, ylab="Negative log-likelihood", xlab="Boosting iteration")
for (k in 1:K_fold_repetitions) {
lines(logliks[, k], lty=3, col=rgb(0, 0, 0, alpha = 0.5))
}
abline(v=m_stop_from_CV, lwd=2, col='red')
legend(
'topright',
legend=c("Sum of log-lik. on test set in 5-fold CV", "Mean of log-lik. sums in 5-fold CV", "Iteration number which minimizes mean"),
col=c(rgb(0, 0, 0, alpha = 0.5), 'black', 'red'),
lty=c(3, 1, 1),
lwd=c(1, 1, 2)
)
dev.off()
result <- boosting_run(
times=times_train,
delta=delta_train,
X=X_train,
Z=Z_train,
m_stop=m_stop_from_CV,
boost_intercepts_continually=boost_intercepts_continually,
should_print=FALSE
)
beta_hat <- result$final_parameters$beta_hat_final
gamma_hat <- result$final_parameters$gamma_hat_final
y0_hat <- exp(X_train %*% beta_hat)
mu_hat <- Z_train %*% gamma_hat
betas <- data.frame(cbind(non_null_parameters(beta_hat) - 1, beta_hat[non_null_parameters(beta_hat)]))
names(betas) <- c("j", "beta_j")
full_filename <- paste0(directory, seed_string, boosting_type, "_", "beta.csv")
write.csv(betas, file=full_filename, row.names=FALSE)
gammas <- data.frame(cbind((1:length(gamma_hat)) - 1, gamma_hat))
names(gammas) <- c("j", "gamma_j")
full_filename <- paste0(directory, seed_string, boosting_type, "_", "gamma.csv")
write.csv(gammas, file=full_filename, row.names=FALSE)
# Run on test set
beta_hat_null <- rep(0, dim(X_test)[2])
beta_hat_null[1] <- beta_hat[1]
gamma_hat_null <- rep(0, dim(Z_test)[2])
gamma_hat_null[1] <- gamma_hat[1]
test_null_loglikelihood <- FHT_minus_loglikelihood_with_all_parameters(
beta_hat_null, gamma_hat_null, X_test, Z_test, times_test, delta_test
)
test_loglikelihood <- FHT_minus_loglikelihood_with_all_parameters(
beta_hat, gamma_hat, X_test, Z_test, times_test, delta_test
)
test_difference_of_deviance <- 2*(test_loglikelihood - test_null_loglikelihood)
loglikelihood_df <- data.frame(
null_loglikelihood=test_null_loglikelihood,
loglikelihood=test_loglikelihood,
deviance=test_difference_of_deviance
)
full_filename <- paste0(directory, seed_string, boosting_type, "_", "test_result.csv")
write.csv(loglikelihood_df, file=full_filename, row.names=FALSE)
}
if (boosting_type == "clinical") {
# Clinical
M_clinical <- 10
CV_result_clinical <- run_CV_clinical(
M_clinical, K_fold_repetitions, K, X_train, Z_train, times_train, delta_train,
boost_intercepts_continually=boost_intercepts_continually
)
### WRITE CV RESULT TO FILE
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "loglik.csv")
write.csv(CV_result_clinical$CV_errors_K_loglik, file=full_filename, row.names=FALSE)
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "deviance.csv")
write.csv(CV_result_clinical$CV_errors_K_deviance, file=full_filename, row.names=FALSE)
## READ CV RESULT FROM FILE
seed_string <- formatC(seed, width=2, flag="0")
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "loglik.csv")
logliks <- read.csv(full_filename)
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "deviance.csv")
deviances <- read.csv(full_filename)
### POST PROCESSING AND PLOTTING
logliks <- CV_result_clinical$CV_errors_K_loglik
ylims <- c(min(apply(logliks, 2, min)), max(apply(logliks, 2, max)))
m_stop_from_CV <- which.min(rowMeans(logliks))
#m_stop_from_CV <- which.max(rowMeans(deviances))
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "loglik.pdf")
pdf(full_filename, width=12, height=6)
plot(rowMeans(logliks), typ='l', ylim=ylims, ylab="Negative log-likelihood", xlab="Boosting iteration")
for (k in 1:K_fold_repetitions) {
lines(logliks[, k], lty=3, col=rgb(0, 0, 0, alpha = 0.5))
}
abline(v=m_stop_from_CV, lwd=2, col='red')
legend(
'topright',
legend=c("Sum of log-lik. on test set in 5-fold CV", "Mean of log-lik. sums in 5-fold CV", "Iteration number which minimizes mean"),
col=c(rgb(0, 0, 0, alpha = 0.5), 'black', 'red'),
lty=c(3, 1, 1),
lwd=c(1, 1, 2)
)
dev.off()
result <- cyclic_boosting_run(
times=times_train,
delta=delta_train,
X=X_train,
Z=Z_train,
m_stop_y0=1,
m_stop_mu=m_stop_from_CV,
boost_intercepts_continually=boost_intercepts_continually,
should_print=FALSE
)
beta_hat <- result$final_parameters$beta_hat_final
gamma_hat <- result$final_parameters$gamma_hat_final
y0_hat <- exp(X_train %*% beta_hat)
mu_hat <- Z_train %*% gamma_hat
betas <- data.frame(cbind(non_null_parameters(beta_hat) - 1, beta_hat[non_null_parameters(beta_hat)]))
names(betas) <- c("j", "beta_j")
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "beta.csv")
write.csv(betas, file=full_filename, row.names=FALSE)
gammas <- data.frame(cbind((1:length(gamma_hat)) - 1, gamma_hat))
names(gammas) <- c("j", "gamma_j")
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "gamma.csv")
write.csv(gammas, file=full_filename, row.names=FALSE)
# Run on test set
beta_hat_null <- rep(0, dim(X_test)[2])
beta_hat_null[1] <- beta_hat[1]
gamma_hat_null <- rep(0, dim(Z_test)[2])
gamma_hat_null[1] <- gamma_hat[1]
test_null_loglikelihood <- FHT_minus_loglikelihood_with_all_parameters(
beta_hat_null, gamma_hat_null, X_test, Z_test, times_test, delta_test
)
test_loglikelihood <- FHT_minus_loglikelihood_with_all_parameters(
beta_hat, gamma_hat, X_test, Z_test, times_test, delta_test
)
test_difference_of_deviance <- 2*(test_loglikelihood - test_null_loglikelihood)
loglikelihood_df <- data.frame(
null_loglikelihood=test_null_loglikelihood,
loglikelihood=test_loglikelihood,
deviance=test_difference_of_deviance
)
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "test_result.csv")
write.csv(loglikelihood_df, file=full_filename, row.names=FALSE)
}
if (boosting_type == "genetic") {
# Genetic
M_genetic <- 50
CV_result_genetic <- run_CV_genetic(
M_genetic, K_fold_repetitions, K, X_train, Z_train, times_train, delta_train,
boost_intercepts_continually=boost_intercepts_continually
)
### WRITE CV RESULT TO FILE
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "loglik.csv")
write.csv(CV_result_genetic$CV_errors_K_loglik, file=full_filename, row.names=FALSE)
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "deviance.csv")
write.csv(CV_result_genetic$CV_errors_K_deviance, file=full_filename, row.names=FALSE)
## READ CV RESULT FROM FILE
seed_string <- formatC(seed, width=2, flag="0")
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "loglik.csv")
logliks <- read.csv(full_filename)
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "deviance.csv")
deviances <- read.csv(full_filename)
### POST PROCESSING AND PLOTTING
logliks <- CV_result_genetic$CV_errors_K_loglik
ylims <- c(min(apply(logliks, 2, min)), max(apply(logliks, 2, max)))
m_stop_from_CV <- which.min(rowMeans(logliks))
#m_stop_from_CV <- which.max(rowMeans(deviances))
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "loglik.pdf")
pdf(full_filename, width=12, height=6)
plot(rowMeans(logliks), typ='l', ylim=ylims, ylab="Negative log-likelihood", xlab="Boosting iteration")
for (k in 1:K_fold_repetitions) {
lines(logliks[, k], lty=3, col=rgb(0, 0, 0, alpha = 0.5))
}
abline(v=m_stop_from_CV, lwd=2, col='red')
legend(
'topright',
legend=c("Sum of log-lik. on test set in 5-fold CV", "Mean of log-lik. sums in 5-fold CV", "Iteration number which minimizes mean"),
col=c(rgb(0, 0, 0, alpha = 0.5), 'black', 'red'),
lty=c(3, 1, 1),
lwd=c(1, 1, 2)
)
dev.off()
result <- cyclic_boosting_run(
times=times_train,
delta=delta_train,
X=X_train,
Z=Z_train,
m_stop_y0=m_stop_from_CV,
m_stop_mu=1,
boost_intercepts_continually=boost_intercepts_continually,
should_print=FALSE
)
beta_hat <- result$final_parameters$beta_hat_final
gamma_hat <- result$final_parameters$gamma_hat_final
y0_hat <- exp(X_train %*% beta_hat)
mu_hat <- Z_train %*% gamma_hat
betas <- data.frame(cbind(non_null_parameters(beta_hat) - 1, beta_hat[non_null_parameters(beta_hat)]))
names(betas) <- c("j", "beta_j")
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "beta.csv")
write.csv(betas, file=full_filename, row.names=FALSE)
gammas <- data.frame(cbind((1:length(gamma_hat)) - 1, gamma_hat))
names(gammas) <- c("j", "gamma_j")
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "gamma.csv")
write.csv(gammas, file=full_filename, row.names=FALSE)
# Run on test set
beta_hat_null <- rep(0, dim(X_test)[2])
beta_hat_null[1] <- beta_hat[1]
gamma_hat_null <- rep(0, dim(Z_test)[2])
gamma_hat_null[1] <- gamma_hat[1]
test_null_loglikelihood <- FHT_minus_loglikelihood_with_all_parameters(
beta_hat_null, gamma_hat_null, X_test, Z_test, times_test, delta_test
)
test_loglikelihood <- FHT_minus_loglikelihood_with_all_parameters(
beta_hat, gamma_hat, X_test, Z_test, times_test, delta_test
)
test_difference_of_deviance <- 2*(test_loglikelihood - test_null_loglikelihood)
loglikelihood_df <- data.frame(
null_loglikelihood=test_null_loglikelihood,
loglikelihood=test_loglikelihood,
deviance=test_difference_of_deviance
)
y0_hat <- exp(X_test %*% beta_hat)
mu_hat <- Z_test %*% gamma_hat
y0_null <- rep(exp(beta_hat_null)[1], length(y0_hat))
mu_null <- rep(gamma_hat_null[1], length(mu_hat))
brier_r2s <- brier_r2_with_censoring_on_times(
times=times_test, delta=delta_test, y0s=y0_hat, mus=mu_hat,
y0_null=y0_null, mu_null=mu_null
)
times_test_non_null <- times_test[!is.na(brier_r2s)]
brier_r2s_non_null <- brier_r2s[!is.na(brier_r2s)]
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "brier_r2.pdf")
pdf(full_filename, width=12, height=6)
plot(times_test_non_null[order(times_test_non_null)], brier_r2s_non_null[order(times_test_non_null)], typ='l', ylim=c(-1, 1))
rug(times_test[!is.na(brier_r2s)])
abline(h=0, lty=3)
dev.off()
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "test_result.csv")
write.csv(loglikelihood_df, file=full_filename, row.names=FALSE)
}
}
stopCluster(cl)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.