processSeuratObject | R Documentation |
Applies a series of Seurat processing steps to each Seurat object in a list. The operations include scaling data, running PCA, UMAP, finding neighbors, and finding clusters. This is done in parallel using multiple cores.
processSeuratObject(
obj,
param.list = p,
update_gene_symbols = FALSE,
add.meta.fractions = FALSE,
precompute = TRUE,
compute = TRUE,
save = TRUE,
plot = TRUE,
nfeatures = param.list$n.var.genes,
variables.2.regress = param.list$variables.2.regress.combined,
harmony.covariates = variables.2.regress,
n.PC = param.list$n.PC,
resolutions = param.list$snn_res,
reduction_input = "pca",
WorkingDir = getwd(),
harmony.seurat.implementation = FALSE,
...
)
obj |
A Seurat object to be processed. |
param.list |
A list of parameters used in the processing steps. |
update_gene_symbols |
A boolean indicating whether to update gene symbols from HGNC. Default: |
add.meta.fractions |
A boolean indicating whether to add meta data for fractions of cells in each cluster. Default: |
precompute |
A boolean indicating whether to compute steps: |
compute |
A boolean indicating whether to compute the steps: |
save |
A boolean indicating whether to save the results. Default: |
plot |
A boolean indicating whether to plot the results. Default: |
nfeatures |
The number of variable genes to use. Default: 2000. |
variables.2.regress |
A list of variables to regress out. Default: NULL. |
harmony.covariates |
A list of covariates to use for Harmony. Default: variables.2.regress. |
n.PC |
The number of principal components to use. Default: 30. |
resolutions |
A list of resolutions to use for clustering. Default: c(0.1, 0.2, 0.3, 0.4, 0.5). |
reduction_input |
The reduction method to use as input for clustering & UMAP. Default: "pca". |
WorkingDir |
The working directory to save the results. Default: getwd(). |
harmony.seurat.implementation |
A boolean indicating whether to use the Seurat implementation
of Harmony. Default: |
... |
Additional parameters to be passed to |
A Seurat object after applying scaling, PCA, UMAP, neighbor finding, and clustering.
# Assuming ls.Seurat is a list of Seurat objects and params is a list of parameters
# results <- mclapply(ls.Seurat, processSeuratObject, params, mc.cores = 4)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.