#' @title VoteRank++
#' @description VoteRank++ algorithm for identifying a set of influential
#' spreaders in complex networks.
#'
#' @param g Graph object.
#' @param r Number of spreaders.
#' @param lambda Suppressing factor, where is from interval [0, 1]
#' @param display Whether to display graph, default FALSE.
#' @param display_layout Custom layout of graph, dafault layout_nicely.
#' @param display_label Whether to display vertex.label, default TRUE.
#' @return Vector of \code{r} vertices identified as spreaders.
#' @examples
#' library(igraphdata)
#'
#' data(karate)
#' voterank_pp(karate, 2, 0.8)
#'
#' @references Csardi G, Nepusz T: The igraph software package for complex
#' network research, InterJournal, Complex Systems 1695. 2006.
#' \url{https://igraph.org}
#' @references Panfeng Liu, Longjie Li, Shiyu Fang, Yukai Yao: Identifying
#' influential nodes in social networks: A voting approach, Chaos,
#' Solitons & Fractals 152. 2021.
#' \url{https://doi.org/10.1016/j.chaos.2021.111309}
#' (\url{https://www.sciencedirect.com/science/article/pii/S0960077921006639})
voterank_pp <- function(g, r, lambda, display = F, display_layout = layout_nicely(g), display_label = T) {
if (r <= 0) {
stop("Number of spreaders must be positive integer.")
}
# Init
spreaders <- c()
graph_order <- igraph::gorder(g)
if (graph_order < r) {
stop(
"Graph order must be greater than number of spreaders."
)
}
# Set initial voting ability
degrees <- igraph::degree(g)
voting_ability <- rep(1, graph_order) - degrees / max(degrees)
for (ith_spreader in seq_len(r)) {
# Set up scores for next iteration
scores <- rep(0, graph_order)
# Calculate scores
for (ith_node in seq_len(graph_order)) {
neighbours_of_ith_node <- igraph::neighbors(g, ith_node, mode = "out")
neighbours_indeces <- as.numeric(neighbours_of_ith_node)
score <- 0
for (ith_neighbour in seq_along(neighbours_indeces)) {
ith_neighbour_neghbours <- igraph::neighbors(g, ith_neighbour, mode = "out")
vp_neighbour <- igraph::degree(g, ith_node) / sum(
igraph::degree(g, ith_neighbour_neghbours))
va_neighbour <- voting_ability[neighbours_indeces[ith_neighbour]]
score <- score + vp_neighbour * va_neighbour
}
score <- sqrt(length(neighbours_indeces) * score)
scores[ith_node] <- ifelse(ith_node %in% spreaders, -1, score)
}
# Identify spreader
spreader <- which.max(scores)
spreaders <- c(spreaders, spreader)
# Update voting ability
neighbours_of_spreader <- igraph::neighbors(g, spreader, mode = "out")
spreader_neighbours_indeces <- as.numeric(neighbours_of_spreader)
voting_ability[spreader_neighbours_indeces] <- lambda * voting_ability[spreader_neighbours_indeces]
for (neighbour_index in seq_along(spreader_neighbours_indeces)) {
second_order_neighbours <- igraph::neighbors(g,
igraph::V(g)[neighbour_index],
mode = "out")
second_order_neighbours_indeces <- as.numeric(second_order_neighbours)
just_second_order_neighbours_indeces <- !(second_order_neighbours_indeces %in% spreader_neighbours_indeces)
voting_ability[just_second_order_neighbours_indeces] <-
sqrt(lambda) * voting_ability[just_second_order_neighbours_indeces]
}
voting_ability[spreaders] <- 0
}
if (display) {
plot(g,
vertex.size = 5,
layout = display_layout,
vertex.color = ifelse(igraph::V(g) %in% igraph::V(g)[spreaders], 'red', NA),
vertex.label = if(display_label) igraph::V(g)$name else NA,
vertex.label.dist = 1,
vertex.label.font = 2,
edge.width = 2,
main = paste('VoteRank++ with suppressing factor: ', lambda)
)
}
return(igraph::V(g)[spreaders])
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.