clustering_metrics: Internal evaluation of clustering results

View source: R/clustering.R

clustering_metricsR Documentation

Internal evaluation of clustering results

Description

Single embedding or dataset evaluation

Usage

clustering_metrics(
  x,
  dat = NULL,
  by = c("k", "m"),
  dissimilarity = NULL,
  cluster_size_table = TRUE,
  silhouette_min_cluster_size = 0,
  internal_metrics = NULL,
  ...
)

Arguments

x

A data.frame of clustering results.

dat

A data.frame with data columns identified with "dim". Not required if dissimilarity is defined.

by

vector of variable names to split by

dissimilarity

a dist object to use in silhouette calculation, defaults to euclidean distance matrix if left NULL

cluster_size_table

return cluster sizes if TRUE.

silhouette_min_cluster_size

proportional cluster size threshold for merging into nearest neighbours' cluster for silhouette computation.

internal_metrics

Internal metric names passed to intCriteria. This will slow the pipeline down considerably.

...

extra arguments are passed to clustering_dissimilarity_from_data

Value

Returns a list containing metrics and cluster sizes


vittoriofortino84/COPS documentation built on Jan. 28, 2025, 3:16 p.m.