library(shiny)
library(png)
library(SingleCellExperiment)
library(ggplot2)
library(plotly)
ui = fluidPage(
sidebarLayout(
sidebarPanel(
helpText("select"),
radioButtons("pick", "sample", choices=c("1R", "6NR")),
width=2
),
mainPanel(
tabsetPanel(
tabPanel("H+E",
helpText("H&E stained image, transformed high-resolution"),
plotOutput("hne", height="600px", width="600px")),
tabPanel("Journal",
helpText("Image from journal"),
fluidRow(
column(width=7,plotOutput("jour",
height="400px", width="400px")),
column(width=5,plotOutput("key")))),
tabPanel("ST",
helpText("Spot assignments guessed from cluster labels"), plotlyOutput("visium"),
helpText("CAF = cancer-associated fibroblast, M0* = macrophage, U* = not assigned here")
),
tabPanel("about",
helpText("
on 7/30/2024 the content in the 'Supplementary file' table at ", a("this GEO URL for GSM7661255", href="https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM7661255")," was retrieved"),
helpText("Upon using 'tar zxf' on the payload, a folder was produced with contents"),
pre("
HCC1R
├── data_SME_1541_identity.csv
├── filtered_feature_bc_matrix
│ ├── barcodes.tsv.gz
│ ├── features.tsv.gz
│ └── matrix.mtx.gz
├── filtered_feature_bc_matrix.h5
└── spatial
├── aligned_fiducials.jpg
├── detected_tissue_image.jpg
├── scalefactors_json.json
├── tissue_hires_image.png
├── tissue_lowres_image.png
└── tissue_positions_list.csv
"),
helpText("This python program was used to import the spatial transcriptomics data and format as
scanpy AnnData:"),
pre('
import stlearn as st
data_hcc1R=st.Read10X("HCC1R/")
data_hcc1R.var_names_make_unique()
data_hcc1R.write_h5ad("hcc1r.h5ad")
'),
helpText("The Bioconductor zellkonverter package was used to import the h5ad to SingleCellExperiment format
as 'hcc1rYES'."),
helpText("The interactive visualization was produced using"),
pre('
assn = hcc1rYES$clustid+1
classes = c("Tum/SAA1", "M0a", "Tum/HP", "M0b", "CAF", "Tum/CYP2E1",
"U1", "U2", "U3")
clvec = classes[assn]
dat = data.frame(x=hcc1rYES$array_col, y=hcc1rYES$array_row, clust=factor(clvec))
colarr = c("1"="darkblue", "2"="orange", "3"="purple", "4"="red", "5"="lightgreen", "6"="steelblue3",
"7"="black", "8"="yellow", "9"="gold")
names(colarr) = classes
pl = ggplot2::ggplot(dat, aes(y=x,x=y,colour=clust,text=clust)) + ggplot2::geom_point() +
scale_colour_manual(values=colarr)
plotly::ggplotly(pl)
')
)
)
)
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.